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1 Overview of the Field
A Markov number is any positive integer in a triple (x, y, z) ∈ N3 solving the Markov Diophantine equation

x2 + y2 + z2 = 3xyz .

Markov numbers provide a dizzying array of fascinating connections between several active research areas.
In Markov’s context, these integers appear as the minima of primitive integral indefinite binary quadratic
forms. Markov’s beautiful theorem from the start of the 20th century provides the first potentially surprising
connection, to continued fractions and Diophantine approximation: Markov numbers index the ‘most irra-
tional’ real numbers. In the mid-20th century, Gorshkov and Cohn separately realized a deep connection to
hyperbolic geometry: Markov numbers correspond to traces of simple closed geodesics on the ‘equianhar-
monic torus’, a hyperbolic surface covering the modular curve with index 12, with holonomy the commutator
subgroup of PSL(2,Z). Later, combinatorial techniques were developed towards the study of Markov num-
bers, using cluster algebras and ‘snake graphs’, deepening geometric perspectives on the continued fractions
arising from Markov numbers. We consider the appearance of Markov numbers from three perspectives.

1. Hyperbolic Geometry Perspective

Markov numbers correspond to the lengths of simple closed geodesics on the modular torus (a once-punctured
hyperbolic torus). This geometric viewpoint, initiated by Cohn and expanded by Series, links Markov num-
bers to extremal Diophantine approximation problems. Recently, McShane provided a geometric proof of
Aigner’s conjectures, concerning an ordering on Q induced by the Markov numbers, using variations in
geodesic lengths along moduli space rays [4]. Gaster extended and proved refined versions of these conjec-
tures (originally by Lee-Li-Rabideau-Schiffler), showing monotonicity of Markov numbers along generalized
slope rays [6]. Geometric proofs of Markov’s theorem now exist using immersed curves and SL(2,Z) repre-
sentations (Ian Agol, 2025). Markov numbers also emerge via triangle group actions and quiver mutations,
as well as from traces in Fricke’s identity [3].

2. Number Theory Perspective

From the classical Diophantine perspective, Markov numbers were first studied by Andrey Markov in relation
to minima of indefinite binary quadratic forms. Several major themes continue to drive number-theoretic
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research. The long-standing Unicity Conjecture posits that each Markov number appears uniquely as the
largest entry in a Markov triple. The Strong Approximation Conjecture of Bourgain-Gamburd-Sarnak [10]
asserts that Markov triples mod p form a single orbit for almost all primes. This conjecture is now nearly
settled by the combination of the pioneering work of Bourgain-Gamburg-Sarnak [10], together with recent
advances of Chen [11] and Eddy-Fuchs-Litman-Martin-Tripeny [15]: Relying on Bourgain-Gamburg-Sarnak,
Chen proved the conjecture for all but finitely many p, and Eddy-Fuchs-Litman-Martin-Tripeny sharpened
and quantifed these works to show connectivity for p > 10393. Martin recently gave a new proof of a special
case of Chen’s result, contributing to further structural results about divisibility and connectivity in Markoff
graphs mod p.

3. Cluster Algebra Perspective

Markov numbers naturally arise in the cluster algebra associated with the once-punctured torus. The recursive
mutation structure of cluster variables mirrors the generation of Markov triples. Evaluating cluster variables
at 1 recovers the Markov numbers. Snake graphs offer a combinatorial model: each Markov number corre-
sponds to a perfect matching count in a planar graph. Using this model, Lee-Li-Rabideau-Schiffler [9] proved
Aigner’s ordering conjectures and conjectured several refinements. Kaufman-Greenberg-Wienhard [16] re-
cently developed a non-commutative version of the Markov equation via non-commutative cluster algebras,
generalizing Markov numbers to new algebraic settings.

2 Recent Developments and Open Problems
Participants in the Perspectives on Markov numbers workshop gathered to share their viewpoints on the
Markov numbers, to discuss recent developments, and to offer avenues for future research. The workshop be-
gan with a trio of introductory talks concerning each of the above viewpoints (delivered by Christopher-Lloyd
Simon for hyperbolic geometry, Colby Brown for number theory, and Ryan Schroeder for cluster algebras),
and followed with a series of research-level talks, delivered by mathematicians at various different career
stages. Participants were encouraged to share ideas for exploration, and time was set aside for participants
to work together, share research questions, and offer suggestions for paths forward. Research directions
discussed coalesced around the main viewpoints discussed above, which we now describe in more detail.

2.1 Markov Numbers in Hyperbolic Geometry
2.1.1 Markov’s Theorem and Geodesics on the Torus

A classical result of Markov is that the worst approximable real numbers (those with the largest Diophantine
approximation constants) are characterized by Markov triples. Markov showed that there is a discrete set of
approximation constants νi (Lagrange spectrum values, see Subsection 2.2.2) decreasing to 1/3, such that if
a real number θ has approximation constant ν(θ) > 1/3, then ν(θ) = νi for some i [14]. The corresponding
θ are called Markov irrationals, and indeed ν(θ) > 1/3 if and only if θ corresponds to a Markov triple.

In geometric terms, this links Diophantine approximation to simple closed geodesics on the modular
torus (once-punctured torus corresponding to the commutator subgroup of PSL(2,Z)). This hyperbolic
interpretation was pioneered by Harvey Cohn, who in the 1950s–1970s developed a viewpoint tying Markov
forms to geodesics on the modular surface [7]. Notably, Cohn (1971) showed that every Markov binary
form corresponds to a closed geodesic on a punctured torus. Caroline Series further gave a topological proof
of Markov’s theorem by studying how simple geodesics avoid a certain cusp neighborhood on the modular
torus. In particular, Series showed that geodesics corresponding to Markov irrationals are exactly those that
spiral into the cusp in a particular way (eventually tracing a simple closed geodesic).

This beautiful picture shows that the worst approximable real numbers are in correspondence with simple
closed geodesics on a hyperbolic torus, or equivalently from certain conjugacy classes in SL(2,Z). High-
lights from the workshop that explored new aspects of Markov’s theorem included Boris Springborn’s talk
The worst approximable rational numbers and Ian Agol’s talk A new proof of the Markov theorem.



3

2.1.2 Fricke’s Identity

The Fricke trace identity provides an algebraic handle on this geometric picture. For any two 2× 2 matrices
X,Y ∈ SL(2, R), for any ring R, Fricke’s identity gives a cubic relation among the traces a = tr(X),
b = tr(Y ), c = tr(XY ) and d = tr([X,Y ]) (the commutator).

In the special case of interest (namely, that arising for a hyperbolic punctured torus), it is natural to
consider X,Y such that the commutator is −I (a full rotation), which yields d = −2. In that case Fricke’s
identity reduces to a2 + b2 + c2 = abc, or equivalently (a, b, c) (suitably normalized) satisfies the Markov
equation. Thus Markov triples can be interpreted as (one-third of the) traces of certain conjugacy classes in
SL(2,Z). A novel perspective on Fricke’s identity and generalizations was offered at the workshop by M. de
Courcy-Ireland, who gave a new proof of Fricke’s identity using the spin representation in a 4-dimensional
orthogonal group.

2.1.3 Hyperbolic geometry proof of Aigner’s Conjectures

Martin Aigner’s 2013 monograph Markov’s Theorem and 100 Years of the Uniqueness Conjecture offered
several conjectures concerning Markov numbers that sidestep the thorny difficulty of Unicity – they are nei-
ther implied by, nor imply, Unicity. Three of these conjectures concern the relative ordering of Markov
numbers. In particular, they predict how Markov numbers grow along certain branches of the Markov tree
when projected to the plane. These are often phrased as the fixed numerator conjecture, fixed denominator
conjecture, and fixed sum conjecture (referring to lines of slope 0,∞, or−1 with respect to a natural descrip-
tion of the Markov numbers via coprime integers). Recent breakthroughs have resolved all three of Aigner’s
conjectures [1, 9] (see Subsection 2.3.2 for more details on this approach).

Greg McShane provided a new proof of Aigner’s conjectures by exploiting the hyperbolic geometry of
the modular torus and the convexity of a certain norm on its homology [4]. The classical correspondence
mentioned above (due to Gorshkov and Cohn) associates each rational p/q ∈ [0, 1] with a simple closed
geodesic on the modular torus X , in such a way that the trace of the associated deck transformation in
SL(2,R) is three times the Markov number mp/q . Because the trace of a hyperbolic element is related to the
length ` of the corresponding geodesic by 2 cosh(`/2) = | tr |, the Markov number mp/q can be viewed as a
monotonic function of the geodesic length `p/q = `(γp/q): indeed, mp/q < mr/s if and only if `p/q < `r/s
on X . McShane’s key insight was to leverage this geometric ordering via the stable norm on homology. The
stable norm ‖ · ‖s on H1(X ,R) ∼= R2 is defined so that for any primitive integer class (q, p) ∈ H1 (which
corresponds to a curve of slope p/q), ‖(q, p)‖s equals the hyperbolic length of the unique geodesic in that
class. This norm is induced by the hyperbolic length functional and has a remarkable property: its unit ball
in H1(X ,R) is a strictly convex curve.

Using the convexity of this unit ball, McShane gave a streamlined proof of all three monotonicity conjec-
tures of Aigner. The idea can be visualized as follows: consider two homology classes (q, p) and (q + i, p)
(horizontal move, fixed p) on the lattice H1(X ,Z). Because the stable norm ball is strictly convex, mov-
ing in a straight line in the (q, p)-plane causes the norm to increase in a predictable way. In particular,
||(q + i, p)||s > ||(q, p)||s, implying that the geodesic for (q + i, p) is strictly longer than that for (q, p).
By the monotonic relation between length and corresponding Markov number, this yields mp/(q+i) > mp/q ,
exactly the Fixed Numerator property. Similar reasoning along vertical lines (fixed q, increasing p) and di-
agonal lines (increasing q while decreasing p to keep p+ q constant) establishes the Fixed Denominator and
Fixed Sum conjectures, respectively. In each case, the convexity of the length norm forces a strict inequality
in geodesic lengths, hence in Markov numbers. This geometric argument treats all cases in a unified manner
and avoids the heavy combinatorial machinery of earlier proofs. McShane’s approach provides a more con-
ceptual understanding: the monotonicity is a direct consequence of the convex geometry of closed geodesics
on the punctured torus.

Jonah Gaster built on McShane’s geometric approach to delve deeper into the Markov ordering. The main
result is a complete characterization of which slopes yield a monotonic Markov ordering, confirming and
sharpening conjectures by Lee–Li–Rabideau–Schiffler that refined Aigner’s predictions. Gaster’s approach
likewise uses the stable norm || · ||s on H1(X ,R). The unit sphere B of this norm is a convex closed curve
which is mostly smooth except at certain primitive lattice points. Gaster computed the slope angles at these
corner points explicitly. In practical terms, he found two critical slope values — call them σ− ≈ −1.414
and σ+ ≈ −1.143 in slope (i.e. ∆p/∆q) — which serve as boundary slopes separating different monotonic
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regimes. Gaster’s computation confirmed specific slope bounds that had been conjectured via cluster-algebra
techniques (Lee–Li–Rabideau–Schiffler had predicted monotonicity would fail in a certain window of slopes
below −3/2).

The Markov ordering of the rationals was explored at the workshop both in Schiffler’s presentation Mono-
tonicity of Markov numbers via perfect matchings of snake graphs, and in a discussion portion of the problem
session led by Gaster.

2.1.4 Hyperbolic Group Actions and Markov Numbers.

Another powerful viewpoint comes from Kleinian and Fuchsian groups. For instance, Jørgensen and Gor-
shkov studied discrete groups related to Markov triples, and Cohn’s work can be reinterpreted in terms of
Fricke groups (subgroups of SL(2,Z) generated by half-turns). In recent work, Anna Felikson and Pavel
Tumarkin have considered the geometry of groups generated by three symmetries (half-turn rotations) on the
hyperbolic plane and found a direct connection to Markov triples.

In fact, the group generated by three 180◦ rotations about points arranged in a certain pattern can produce
Markov numbers through its limit set or orbit geometry. In Felikson’s presentation Groups generated by
three symmetries on the hyperbolic plane at the workshop, she showed that these configurations correspond
to rank-3 quiver mutations (related to cluster algebras) and that geometric features of these triangle groups
explain known properties of Markov numbers. This provides a vivid geometric interpretation of the mutation
operations that generate all Markov triples from (1,1,1). It also unifies the hyperbolic and cluster perspectives:
the Markov triple graph can be seen as the Cayley graph of a certain triangle group in the hyperbolic plane.

2.1.5 Simple Geodesics, Markov Fractions, and Diophantine Approximation.

Hyperbolic geometry not only explains why Markov numbers solve an extremal approximation problem for
irrational numbers, but it also sheds light on rational approximations. In 2024, Boris Springborn classified
the worst approximable rational numbers i.e. rationals whose approximation constant is ≥ 1/3 [12].

Springborn found that there is a planar forest of Markov fractions – rational numbers p
q whose denomi-

nators q are Markov numbers – which are analogues of Markov irrationals.
In fact, these Markov fractions (between 0 and 1) can be organized in a tree (sometimes called the Markov

tree or Conway–Markov tree) obtained by a modified mediant operation. Springborn proved that these frac-
tions, together with two infinite sequences of companions for each (obtained by certain geodesic spiraling op-
erations), are exactly the rationals with approximation constant = 1/3. Geometrically, the Markov fractions
correspond to simple proper geodesic arcs on the torus (with both ends at the cusp), while their companions
correspond to certain self-intersecting geodesics that avoid intersecting two particular simple geodesics.

2.1.6 Algebraic Geometry connects to hyperbolic geometry

The hyperbolic perspective also surprisingly connects to algebraic geometry. Exceptional vector bundles on
complex surfaces provide an example: it was known from the 1980s (work of Drézet–Le Potier and Rudakov)
that on the projective plane P2, the ranks of exceptional bundles must be Markov numbers.

Recent work by A. Veselov (2025) [8] bridges this fact with Springborn’s Markov fractions. Veselov
showed that, in fact, the slopes of all exceptional bundles on P2 are exactly the Markov fractions.

In other words, not only are the ranks constrained to Markov numbers, but the ratio c1/r (first Chern class
over rank) of each exceptional bundle is one of Springborn’s special fractions. This provided a new proof of
Rudakov’s result (since if slope p/q is a Markov fraction, then q is a Markov number).

It also reveals an unexpected Markov property in algebraic geometry: these stable bundles are in bijection
with Markov triples. This is a beautiful example of the hyperbolic/Diophantine viewpoint informing pure
algebraic geometry. This aspect of the Markov numbers was discussed in Veselov’s presentation Markov
fractions and the slopes of the exceptional bundles on P2 at the workshop.

2.1.7 Future directions

The hyperbolic perspective leads to many intriguing questions. Markoff–Hurwitz equations are higher-
dimensional analogues of the Markov equation (e.g. x21 + · · · + x2n = kx1 · · ·xn for n > 3). They too
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have an infinite tree of solutions, but the distribution of those solutions is far more complex. Zagier (1982)
showed that the number of solutions up to a bound exhibits a fractional exponent (a “fractal” growth rate) in
contrast to the quadratic growth for n = 3.

Understanding this fractal asymptotic and its geometric meaning remains an open challenge. Arthur
Baragar (2025) found that curves on certain K3 surfaces have orbits with similarly puzzling growth – neither
purely polynomial nor random, but fractal-like, and he conjectured a relationship between these growth-rates
and the Hausdorff dimension of a certain Kleinian group that arises from consideration of the K3-surface.
A tantalizing question is whether one can classify or predict the behavior of these orbits of rational points
on K3 surfaces, paralleling the Markov case. These ideas were explained in Baragar’s presentation Orbits of
rational points on K3 surfaces.

Unicity has a hyperbolic interpretation: it predicts a unique simple geodesic (up to symmetries) for each
length. The connection between Markov geodesics and mapping class group dynamics or modular forms
is an active area of exploration (as explained by Simon’s introductory talk, which proposed new results
and conjectures from blending these viewpoints). The hyperbolic geometry perspective, rooted in Markov’s
century-old theorem, continues to drive modern research with new methods and fresh conjectures.

2.2 Markov Numbers in Number Theory
2.2.1 Classical Diophantine Results and the Unicity Conjecture.

In number theory, Markov’s original interest was classifying the indefinite binary quadratic forms with min-
ima above 1/3. Equivalently, he described all Markov triples of positive integers via a recursive process now
known as Vietá involutions.

Starting from (1, 1, 1), one can generate every Markov triple by repeatedly replacing one entry using the
rule (a, b, c) 7→ (a, b, a

2+b2

c ) (and permutations thereof). This produces an infinite tree of solutions (the
Markov tree). A remarkable, elementary property is that aside from the smallest two triples (1, 1, 1) and
(1, 1, 2), all Markov triples consist of three distinct numbers. Of course, fundamental questions about the
Markov numbers remain open, including notoriously Unicity, which was first posed by Frobenius in 1913.

Beyond Unicity, number theorists have uncovered other striking properties of Markov numbers. For
example, along one branch of the tree, all Markov numbers are odd-indexed Fibonacci numbers, and along
another, they are Pell numbers. Divisibility constraints show that Markov numbers avoid certain residues: no
prime congruent to 3 (mod 4) can divide any Markov number. In particular, every odd Markov number is 1
(mod 4) (this fact is quite old and was known to Frobenius and Hurwitz; it is related to the fact that Markov
numbers appear in solutions of x2 ≡ −1 (mod p), which requires −1 to be a quadratic residue). Another
mysterious property is that Markov numbers often have few prime factors, and yet are very rarely prime
powers [10]. These observations reflect the rich interplay between Markov numbers and classical number
theory.

2.2.2 Structure of the Markov spectrum

The Markoff spectrum arises from studying the minima of indefinite binary quadratic forms. Given a
quadratic form

q(x, y) = ax2 + bxy + cy2 with discriminant ∆(q) = b2 − 4ac > 0,

the Markoff constant is defined as

M(q) =

√
∆(q)

inf(x,y)∈Z2\{(0,0)} |q(x, y)|
.

The set of all such constants forms the Markoff spectrumM. Below the value 3, this spectrum is discrete
and coincides with the Lagrange spectrum. Markoff numbers, satisfying the Diophantine equation

m2
p +m2

q +m2
r = 3mpmqmr,
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index this part of the spectrum through the correspondence

m←→
√

9m2 − 4

m
.

Beyond 3, the structure of the Markoff spectrum becomes more intricate. Marshall Hall showed in 1947
that the interval [6,∞), known as Hall’s ray, is included in the spectrum [18]. His work relied on constructing
sums of continued fractions with bounded partial quotients, such as elements of the Cantor-like set

C(n) = {α = [0; a1, a2, . . .] ∈ [0, 1] | 0 < ai ≤ n ∀i}.

An important open problem involves the arithmetic sum C(2)⊕C(2), specifically whether it contains an
interval. Although every number inM∩ [

√
5, 3) corresponds to a continued fraction with partial quotients

in {1, 2}, this condition is not sufficient for inclusion. For example,

L([1; 2, 1, 2, . . .]) =
1 +
√

10

3
=
√

10 6< 3.

Thus, the question arises: does C(2)⊕ C(2) contain any real interval? The connection between this set and
M∩ [

√
5,
√

12] suggests a deeper structure possibly linked to the Hausdorff dimension of these sum sets.
A further extension of the problem is the study of multidimensional Markoff spectra. These generalize

the classical case to forms in n variables, such as products of linear forms, and their minima over integer
lattices. Very little is known about these higher-dimensional spectra, and it remains an open question whether
techniques like Hall’s can be generalized, or what the analogues of sets like C(n) would be in this context.

Aspects of the Markoff spectrum were explored in Peter Sarnak’s presentation Diophantine analysis of
Markoff type cubic surfaces, and in the lightning talk of Luke Jeffreys.

2.2.3 Strong Approximation and Markoff Graphs mod p.

A major modern development is the study of the Markoff equation modulo primes. Consider the Markov
surface x2 + y2 + z2 = 3xyz as an affine variety. The group of symmetries generated by Vietá involutions
and permutations acts on the set of integer solutions. The Strong Approximation Conjecture for Markov
numbers, formulated by Baragar (1991) [19] and later popularized by Bourgain, Gamburd, and Sarnak [10],
posits that this action is transitive on the solutions modulo p, for every prime p (when considering nonzero
solutions in (Z/pZ)3).

In graph-theoretic terms, the Markoff graph mod p – whose vertices are the solutions to x2 + y2 + z2 =
3xyz (mod p) (excluding the zero vector), with edges for Vietá moves – is conjectured to be connected for
each prime p. This is a deep conjecture about expansion on an arithmetic graph, with links to the theory of
expander graphs and sieve methods.

Significant progress has been made in the last decade. In 2016, Bourgain, Gamburd, and Sarnak (BGS) [10]
proved an "almost all" result: for all but a density-zero set of primes, the Markoff graph mod p is connected.
More precisely, they showed that any potential finite obstacles (primes for which the mod-p solutions split
into multiple orbits) must lie in a finite (effectively computable) set. Their method combined the expansion
properties of the Markoff graphs with the classification of certain algebraic Q-orbits.

Building on this, William Chen achieved a breakthrough in 2021: using novel tools from algebraic geom-
etry (specifically, Hurwitz spaces of covers of elliptic curves) and nonabelian level structures, Chen proved
that for all but finitely many primes p, the Markoff mod p graph is indeed connected (transitive action).
Chen’s result constitutes a significant step towards resolving the Strong Approximation Conjecture, reducing
it to checking a finite list of small primes by direct computation. Recent work has pushed this story further.
Eddy-Fuchs-Litman-Martin-Tripeny [15] have quantified Bourgain-Gamburd-Sarnak’s work, demonstrating
that the Markoff mod p graph is connected when p > 10393, and Colby Brown has demonstrated numerically
connectivity for p < 106 [20]. Aspects of this story were covered extensively in Colby Brown’s introductory
talk, in William Chen’s presentation Markoff triples mod p and SL(2, p)-covers of elliptic curves, and in
Gamburd’s presentation on Strong Approximation.

Chen’s crucial breakthrough towards the Strong Approximation Conjecture was to show that connectivity
of those graphs is equivalent to the connectedness of certain Hurwitz moduli spaces of SL(2, p)-covers of
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elliptic curves – and then prove that all those Hurwitz spaces are connected (again with finitely many possible
exceptions). In particular, Chen showed the group of Markoff moves acts transitively on solutions mod p for
all sufficiently large p, by relating the orbit count to a degree of a map between moduli stacks and proving
a congruence condition on that degree. This was a tour-de-force combining arithmetic geometry and group
theory.

The ramifications of Chen’s theorem are significant. One immediate corollary is a strong approximation
property: the Markoff equation’s integral solutions are Zariski-dense and surject onto solutions mod p for
all large primes. Another consequence is that any congruence constraints on Markov numbers must be very
special (in fact, Chen’s work implies that aside from the known p 6≡ 3 (mod 4) condition, there are no other
systematic congruence restrictions holding for all Markov numbers).

The connectedness of Markoff graphs mod p is also related to the expansion property; conjecturally,
these graphs form a family of expanders, which has implications in complexity theory and combinatorics.
Very recently, Daniel Martin (2025) gave an alternate proof of a special case of Chen’s result: he proved that
in any connected component of the Markoff graph mod p, the number of vertices is divisible by p. This proof
was presented by Daniel Martin in his talk Arithmetic in Markoff mod p subgraphs.

2.2.4 Diophantine and Algebraic Open Questions.

Of course, though there are at most finitely many exceptions, the Strong Approximation Conjecture remains
open. There are also other number-theoretic challenges. The Unicity Conjecture remains the paramount
open problem, and while there are recent advances towards understanding variations of Markov numbers
in the Farey tree, a full proof likely requires a new idea. Another open direction is the Markoff-Hurwitz
equations for n > 3: number theorists have shown these higher-dimensional analogues do not enjoy the
same kind of uniqueness or monotonicity, and the count of solutions grows in a fractal way as mentioned
above. Understanding the distribution of fractal Markov numbers for n ≥ 4 is largely uncharted. Also of
interest is the appearance of Markov numbers in other Diophantine equations and combinatorial contexts –
for example, Markov numbers appear in relation to Frobenius coin-exchange problems and in the theory of
Apollonian circle packings (there is an analogy between the Markov tree and Descartes’ circle equation).

2.3 Markov Numbers in Cluster Algebras
2.3.1 Cluster Algebra of the Once-Punctured Torus

Markov numbers also appear in the realm of cluster algebras – a framework introduced by Sergey Fomin and
Andrei Zelevinsky in 2002 to study recursive combinatorial structures in algebra [13].

The connection arises from a simple observation: the Markov triple recurrence (x, y, z) 7→ (x, y, 3xy−z)
(the Vietá involution) is analogous to a cluster mutation. In fact, if one considers a rank-3 cluster algebra with
initial exchange matrix (quiver) forming a triangle (often called the Markov quiver with three vertices), the
exchange relation can be written in the form z′ = x2+y2

z , which mirrors the Markov equation. Specifically,
the cluster algebra associated to a once-punctured torus has an exchange relation that is exactly the Markov
equation when specialized appropriately.

James Propp noted in 2005 that Markov numbers appear as a specialization of the cluster variables in
this cluster algebra [5]. Independently, Beineke, Brüstle, and Hille [22] showed that the Markov equation
describes the exchange relations for a cluster-cyclic quiver with three vertices. In summary, Markov triples
are in bijection with seeds (clusters) in the once-punctured torus cluster algebra, and the Markov mutations
correspond to cluster mutations.

One concrete way to see this is: label the three cluster variables in the initial seed as x, a, b on a triangle
quiver. The exchange relation for the variable x (mutating at x) will produce a new variable x′ satisfying
x · x′ = a2 + b2 (assuming a certain convention of exchange matrix). If we set the initial cluster variables
(x, a, b) = (1, 1, 1) (all ones), then by induction each subsequent cluster variable in this algebra takes an
integer value – in fact, those values are exactly the Markov numbers. All Markov numbers can be generated
by evaluating the cluster variables of the once-punctured torus algebra at the initial seed values 1. This
situates the Markov triple recursion in a broader algebraic context, allowing one to apply general cluster
algebra techniques (such as g-vectors, F -polynomials, etc.) to study Markov numbers. This viewpoint was
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discussed in Dani Kaufman’s talk Non-commutative Markov numbers and in the lightning talk of Sam Evans
Arithmetic and geometry of Markov polynomials.

2.3.2 Snake Graphs and Perfect Matchings.

A powerful combinatorial tool in cluster algebras is the snake graph technique (developed by Musiker, Schif-
fler, et al.). For cluster algebras from surfaces, each cluster variable can be associated with a snake graph,
a certain planar graph whose perfect matchings correspond to terms in that cluster variable’s Laurent ex-
pansion. In the case of the Markov (punctured torus) algebra, every cluster variable can be obtained as the
number of perfect matchings of a certain snake graph. When the cluster variables are specialized at 1, this
number of perfect matchings is exactly the cluster variable’s value.

Therefore, each Markov number is the number of perfect matchings of a corresponding snake graph.
Ralf Schiffler and collaborators exploited this combinatorial interpretation to great effect. In a joint work,
Lee–Li–Rabideau–Schiffler [9] studied monotonicity properties of Markov numbers by examining how these
snake graphs grow when “tilted” along a fixed slope. They proved that along any line of slope between −8/7
and −5/4, the Markov numbers increase or decrease monotonically. In particular, the conjectured orderings
for slope 0 and 1 (Aigner’s conjectures) follow as special cases. The snake graph model was crucial in their
proof, reducing inequalities between Markov numbers to inclusion relations between perfect matching sets.
By combinatorial means, they circumvented difficulties that had stymied direct number-theoretic approaches
for years. The resolution of the three Aigner conjectures thus stands as a triumph for the cluster algebra
perspective on Markov numbers.

2.3.3 Cluster Geometry and Non-Commutative Markov Numbers.

The relationship between the cluster algebra and hyperbolic geometry is also a two-way street. On one hand,
Felikson’s work (mentioned above) showed how geometric group theory can interpret cluster mutations. On
the other hand, cluster algebras themselves have geometric realizations (via Teichmüller spaces and lambda
lengths). The once-punctured torus cluster algebra corresponds to the decorated Teichmüller space of a one-
cusped torus, which is essentially the hyperbolic modular torus – hence the same object underlying Markov’s
classical theory. This provides a direct bridge between the cluster Y -variables (which satisfy a periodicity
known as the Markov moves) and the length spectra of geodesics. Thereby, cluster algebra techniques might
offer a path to proving uniqueness or other metric properties by translating them into algebraic identities.

Another exciting development is the extension of Markov’s story to non-commutative algebras. Re-
cently, Dani Kaufman, Zachary Greenberg, and Anna Wienhard applied the framework of non-commutative
cluster algebras (due to Berenstein and Retakh) to the Markov equation [16]. In their work, they define a
non-commutative Markov equation in a ring with involution, by evaluating the cluster variables of the non-
commutative cluster algebra of a once-punctured torus at appropriate (matrix or ring) values.

This yields non-commutative Markov numbers, which are elements of the chosen ring that reduce to the
usual Markov numbers upon taking a commutative specialization. For example, by plugging in certain 2× 2
matrices or dual numbers for the initial cluster data, they constructed “Markov numbers” that are polynomials
(deformations of the classical integers), dual number analogues, or elements of a group algebra.

These provide new invariants and possibly symmetries of the Markov equation. While still in early
stages, this non-commutative generalization opens the door to considering Markov-type equations in settings
like free groups or quantum clusters, where one might define a quantum Markov equation. It also enriches
the algebraic structure: for instance, one can ask if the non-commutative Markov numbers in a group ring
encode the classical Markov primes or any subtle congruence information. Kaufman’s talk indicated a variety
of examples and a general framework to produce such exotic Markov “numbers” in arbitrary rings. This is a
fresh avenue of research at the intersection of cluster algebras, algebraic geometry, and even physics (since
cluster algebras have appeared in quantum dilogarithm identities and Teichmüller theory).

2.3.4 Future directions

The cluster algebra point of view has proven extremely fruitful for combinatorial and algebraic aspects of
Markov numbers. It transformed understanding of the Markov tree into understanding of a cluster complex,
where tools like g-vectors and seed mutations translate into Diophantine properties of Markov triples [9].
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With all three of Aigner’s monotonicity conjectures now resolved by cluster methods, one might be
tempted to attack the full unicity conjecture using cluster algebra as well. However, the unicity conjecture
is equivalent to saying that no two distinct sequences of cluster mutations (starting from the initial seed)
ever produce the same cluster variable value as the largest element. This seems to require a very strong
form of separation between mutation paths. While not yet achieved, cluster theory provides a clear language
to formulate this: it would mean the cluster fan for the Markov quiver has a certain property ensuring a
unique maximal g-vector for each cluster variable value. This remains difficult. Nonetheless, the progress
so far suggests that the blend of combinatorics (snake graphs), algebra (Laurent polynomials), and even
geometry (tropical and Teichmüller interpretations) inherent in cluster algebras will continue to shed light on
Markov numbers. The fact that a 19th-century Diophantine problem finds natural expression in a 21st-century
algebraic theory is a testament to the unity of mathematics – and it hints that further surprises may be in store
as these perspectives converge.

3 Presentation Highlights
Here is a list of presentations delivered at the workshop:

• Intro 1 - Markov numbers and hyperbolic geometry by Christopher-Lloyd Simon, Monday 9:00-10:00

• Intro 2 - Markov numbers and number theory by Colby Brown, Monday 10:30-11:30

• Intro 3 - Markov numbers and cluster algebras by Ryan Schroeder, Monday 13:00-14:00

• Diophantine analysis of Markoff type surfaces by Peter Sarnak, Monday 15:00-16:00

• The worst approximable rational (sic!) numbers by Boris Springborn, Tuesday 9:00-9:30

• Markov fractions and the slopes of the exceptional bundles on P2 by Alexander Veselov, Tuesday
9:45-10:15

• Strong Approximation by Alexander Gamburd, Tuesday 10:45-11:15

• Markoff triples mod p and SL(2,p)-covers of elliptic curves by William Chen, Tuesday 11:30-12:00

• Arithmetic in Markoff mod p subgraphs by Daniel Martin, Tuesday 13:45-14:15

• Monotonicity of Markov numbers via perfect matchings of snake graphs by Ralf Schiffler, Tuesday
14:30-15:00

• Groups generated by three symmetries on the hyperbolic plane by Anna Felikson, Tuesday 15:45-16:15

• Fricke’s trace identity and spin groups by Matthew de Courcy-Ireland, Tuesday 16:30-17:00

• Lightning session talks, Tuesday 20:00-21:00

– Arithmetic and geometry of Markov polynomials by Sam Evans

– Markov’s conjecture on integral necklaces by David Fisac

– Residual Transitivity modulo p implies Minimality (for Markoff surfaces) by Seung uk Jang

– Lagrange and Markoff spectra by Luke Jeffreys

• Orbits of rational points on K3 surfaces by Arthur Baragar, Thursday 9:00-9:30

• Non-commutative Markov numbers by Dani Kaufman, Thursday 10:00-11:00

• A new proof of the Markov theorem by Ian Agol, Thursday 11:15-11:45

• Twist tori equidistribute in moduli space by Aaron Calderon, Thursday 13:45-14:15

• Orbifold Markov numbers by Esther Banaian, Thursday 14:30-15:00
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• Markov numbers, Fock’s function, and Mather’s β function by Alfonso Sorrentino, Thursday 15:45-
16:15

• Markoff triples and linear recurrence sequences by Elisa Bellah, Thursday 16:30-17:00

Wednesday and Friday mornings consisted of participants breaking into groups to pose research questions,
and consider new directions for exploration. A list of topics discussed can be found in the following section.

4 Scientific Progress Made
We briefly describe some of the questions and open problems proposed and explored during the workshop.
Some of these questions have become active current collaborations.

4.1 Hyperbolic geometry
1. (Simon/Gaster/Martinez-Granado) Understand closed simple geodesics and simple proper geodesic

arcs in quotients of congruence subgroups Γ(2),Γ(3),Γ(5). In particular, what are their length / λ-
length spectra? What are the arithmetic properties of these numbers? In a similar vein, identify the
fractions p/q that project to simple arcs on the hyperbolic surface which is the commutator cover of the
modular torus. Conjecturally, this set of denominators is given by N – this would in particular imply
the Zaremba Conjecture; is it possible to count the number of simple arcs with λ-length at most n?
prove density of the simple λ-lengths in [0, n]? Gaster, Martinez-Granado and Gaster plan to continue
thinking on these questions together.

2. (Springborn) The geometric interpretation of Markov numbers comes from looking at the hexagonal
torus. Is there an analogous theory for the square torus?

3. (Agol) The Markov spectrum above 3 has many gaps, until at about 4.5, Freiman’s constant. Find
topological explanation for geodesics below Freiman’s constant: do closed geodesics which don’t go
deep into the cusp have few bigons?

4. (Gaster) The Unicity Conjecture is hard, but the geometric perspective might at least yield new bounds
on the multiplicity of the Markov number n (or, equivalently, simple closed geodesics of length equal
to L ≈ log(n)). For example, using a bound by Jarnik for integral points on strictly convex curves on
the plane, one can get an upper bound of log(n)2/3. Can we use our finer understanding of the space
of meausured laminations to get better bounds?

5. (Gaster/Martinez-Granado) Same question as above, but using Teichmüller dynamics, in particular,
earthquake flow excursions.

6. (Gaster/Martinez-Granado) From the number theoretic viewpoint, Markov numbers can be associated
to minima of integral primitive indefinite binary quadratic forms. In fact, there is a correspondence
between geodesics in the modular surface and such quadratic forms up to PSL2(Z) conjugacy. Given
two quadratic forms of the same discriminant (same length closed geodesics), there is a well-defined
composition operation (up to conjugacy), q1 ∗ g2 = q3. Is there a geometric characterization of when
q1, q2, q3 appear in such a triple?

7. (Chen) Can one get better bounds on the size of components of mod p graph by using hyperbolic
geometry and length estimates in the Farey tree?

8. (Fuchs) How many “k-companion” Markov numbers (a notion developed by Springborn, and explained
in his talk) are there ≤ N?

9. (Gaster) What bounds are possible for the number of simple closed geodesics of length precisely L on a
closed hyperbolic surface of given topological type? Schmutz-Schaller conjectures that, for punctured
tori, the Markov bound of 6 holds independent of hyperbolic structure. Try to find constructions of
many such curves.
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10. (de Courcy-Ireland/Jeffreys) A family of graphs studied by Jeffreys, related to square-tiled surfaces has
features paralleling de Courcy-Ireland’s work on Markoff graphs modulo prime numbers. Study their
Euler characteristic and the bulk distribution of their eigenvalues.

4.2 Cluster algebras
1. Prove or disprove that all solutions in integer Laurent polynomials ofX2+Y 2+Z2 = k(x, y, z)XY Z,

where k(x, y, z) = x2+y2+z2

xyz , can be found from X = x, Y = y, Z = z by mutations, generalizing
the situation for the Markov equation.

2. (Banaian/Yildirim) Investigate the connection of Markov numbers with the representation theory of
quivers and cluster algebras. First of all, a possible representation theory connection we want to delve
into is inspired by the paper by Alex Lasnier titled “Christoffel words and Markoff triples: an alge-
braic approach” (https://arxiv.org/pdf/1104.1799). The author in that paper uses certain string modules,
called Markoff modules, to get Markov numbers/triples by defining a binary tree isomorphism. More-
over, they define a mutation to get from one Markov triple to another by using using approximating
triangles. We would like to understand this construction in a more categorical way: By understanding
these Markoff modules as objects in certain cluster categories and their mutation as the mutation in the
cluster categories. We suspect that this mutation Lasnier defines should coincide with the mutation of
quiver with potential in the sense of Daniel Labardini-Fragoso (https://arxiv.org/abs/1302.1936).

Moreover, there is a one-to-one correspondence between Markov triples and Christoffel words. There
are also celebrated bijections between elements of Coxeter groups and certain classes in the repre-
sentation theory of preprojective algebras. See for instance the paper by by Yuya Mizuno and Hugh
Thomas (https://arxiv.org/pdf/1804.02148). One interesting question is to combine all these beautiful
mathematics and getter a better understanding of Markov triples in this type of representation theory.
Since Coxeter groups are quite broad, this may lead to new discoveries for Markov numbers or some
new connections to generalized Markov triples.

3. (de Courcy-Ireland/Kaufman) In Kaufman’s paper with Greenberg and Wienhard, Kaufman proves
trace relations for SL2 over non-commutative rings. Taking SL2 over a ring of matrices gives an
identity for the symplectic group. de Courcy-Ireland had also encountered this symplectic identity in
a project on spin groups. There might be other connections, and de Courcy-Ireland plans to explore
them further. Furthermore, they anticipate that Martin’s approach to Chen’s congruence might give
congruences for the exchange graphs of other cluster algebras.

4.3 Number theory
1. (Chopra) What is the probability that the first digit of a Markoff number is 1? Is it log10(2)? (and is

the probability that the first digit is d equal to log10(1 + 1
d )?

2. (Brown/Littman) Is (1, 1, 1) in the ‘big component’ of the Markoff mod p graph (explained in the
work of Bourgain-Gamburd-Sarnak, and elucidated by Chen, Fuchs, Littman, de Courcy-Ireland, etc.)?

3. (Baragar) It is well-known that Unicity holds for Markov numbers m such that m = pk for prime p,
and yet Bourgain-Gamburd-Sarnak showed that most Markoff numbers are composite. It is also well-
known that Unicity holds for Markov numbers m such that 3m ± 2 = pk for prime p. Is it true that
3m± 2 is composite for most Markoff numbers?

4. (?) Let Mn indicate the nth Markoff number. Provide upper or lower bounds for Mn+1 −Mn. Can
supn≤N Mn+1 −Mn be bounded by a polynomial in N? (or even sub-polynomial?)

5. (Simon) Two irrational numbers α, β ∈ R \Q are eventually PGL2(Z)-equivalent (that is, there exists
m ∈ N such that for all n ≥ m, the numbers nα and nβ belong to the same PGL2(Z)-orbit) if and
only if α ≡ ±β (mod 1). At the time of finishing this report, there has been partial progress towards
this conjecture, in recent work by Schmiedling and Simon [2, Proposition A.8]. Daniel Martin and
Simon plan to continue exploring this conjecture together.
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6. (Gaster/Martinez-Granado) The class numbers groups associated to determinants containing quadratic
forms associated to Marov numbers seem to display some interesting structure. Understand this pat-
terns, specifically, can one characterize the role of the Markov element in each class group. Gaster,
Martinez-Granado and Simon plan to continue this project together.

7. (Litman/de Courcy-Ireland) Study the orbits mod p for the Markoff-type surfaces studied by Gyoda
and Matsushita. Integer points on those same surfaces appeared in Esther Banaian’s talk. Investigate
further what can be said about strong approximation or local-global obstructions for these surfaces.

5 Outcome of the Meeting
The workshop successfully fostered vibrant interdisciplinary dialogue among researchers in hyperbolic ge-
ometry, number theory, and cluster algebras. This cross-pollination of ideas led to new collaborations, as
evidenced by joint projects initiated during the meeting—such as those between de Courcy-Ireland and Jef-
freys, and between Martínez-Granado and Simon, among many others.

The meeting also served as an entry point into current research for graduate students, who were introduced
to a wide array of open problems from multiple perspectives. In addition, it provided a valuable platform for
early-career researchers to present their work—whether through short presentations, in-depth introductory
talks, or lightning talks. For example, Fisac and Jang gave lightning talks as graduate contributors. Brown
gave an introductory lecture on Markov numbers from the number-theoretic standpoint, and Evans delivered
a short talk on his research.

Overall, the meeting created a stimulating environment that deepened cross-disciplinary connections and
broadened participation among junior researchers.
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