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1.Thesis 1.Let's move beyond iid Gaussian noise
2.Theory 2.Likelihood-free hypothesis testing
3.Practice 3.Physics, Computer Vision, Comm




Classical detection and estimation
Adding a splash of 21st century

> How do we teach signal detection? > ... more generally:
H,:Y ~ /(1,67 H :Y ~ (-1, Hy:Y"~P,PeP H :Y"~0,0€@

1 and do what?..
and threshold the average — Z Y. 20
m =

; > Try GLRT, otherwise search Annals of Stats

> ... more generally: » Problem: if &, @ are realistic (i.e. large), then sample

H. - Y" =g + 7" H - Y" =g + Zm complexity is bad (curse of dimensionality etc)
0 = 90 ] - =93]
and do matched filter: (Y, s; — s5) 2 0 often we have side information (prior
, v knowledge) about Py, Qy. in the form of iid
... more generally: samples.

Hy:Y" ~ Py, H,:Y" ~ Qyn

and do Neyman-Pearson simulations RF captures



What is likelihood-free inference?



What is likelihood-free inference (LFl)?

aka simulation-based inference (SBI)

> Simulation access to black-box model 0 — X ~ P,

» Given truedata Z ~ | gm do inference on 8*

> Intractable likelihood: do so without learning the map @ — |

> Examples: climate modeling and particle physics



Discovery of the Higgs boson

» Observe data Z ~ P®™

Hy | versus H,; : |

" noHiggs " Higgs

. Simulate X ~ P®"  and Y ~ P®"
noHiggs Higgs

‘:Zi

® S = classifies* X vs Y

Output=#{e € S} Sy

® , |
Simulation of the birth of a Higgs

boson (CERN, Lucas Taylor)

*Boosted decision trees in the case of the Higgs boson céiscovery



Minimax setup



Likelhofree hypothesis testing (LFHT)

| |

1) Fix»

2) Let
3) Si

4) Depending on H, or H, nature generates Z ~ | f?m or [ ff’m respectively

5) Statistician observes (X, Y, Z, &, €) and decides H,, or H,



Likelihood-free hypothesis testing (LFHT)

R(e, P) C N’ is set of (m, n) s.t. exists test that given X, Y, Z performs

L

Versus

with (Type-l + Type ll error) < 1 % .

278

Hl ° i Y — i Z
On Classification with Empirically 'V'Aichae' Gutman
. 44 : aron Wagner
Observed Statistics and Universal Sean Meyn
Data Compression Ashish Khist
| Vincent Tan

JACOB ZI1V, FELLOW, IEEE

> ... and other prior work. But only for
discrete distributions and fixed

TV(

X’L

v) X1, mn— oo



Statistical Problems

Y ~ |

Y
Xm
4

— unknown, |

/

o known, all in &



The classes &

Choices of & we considered:
- P (B, d) = | B-Holder densities over [0,1]¢ with || - |lzs < Cy}
aka [ times differentiable densities.

- Py(s) = (@AM Lin Sabalavcatinasia N 022 < Cg)

focus on &, (smooth densities)
Db

r— ¥ 3

> P (k) = {dis

> arbitrary densities on [O,l]d (with MMD separation instead of TV)
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Rates vs sample complexity

Famous results for £ (f, d)

Rate Sample complexity
_ P - 2p+d/2
Goodness-of-fit N~ 2p+d2 € 7 =N,
: : p 2+ d
Estimation T e e



X~ P2 Y ~PSand Z ~ PS" € {PY", PS")

Results for &, & and P,

Theorem (Gerber-P.'2022)

Up to constant factors:

R(e. P) x{m > 1/€* and n > nGO,:}
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Qn Qn Qm RQm mRm
X~PINY ~Po"and Z ~ PS" e (P, PO}

Interpreting the results

RK(e, P) < {

m > 1/€* and n > nGoF}
2

NGoF NE gt

@H(ﬂ, d) €_2ﬁ-;d/2 €_2ﬂ’;—d

o
9?(6 @)

nEst

NGoF

Target: minimal m (as in Higgs)

_ 2 2
HEgt = nGoF €

1/62 NGoF m
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Qn Qn Qm RQm mRm
X~PINY ~Po"and Z ~ PS" e (P, PO}

Interpreting the results

n XA ) R(e, P) = {m 2 1/e* and n % nGOF}
_ and n-m 2 ng ¢
k Point Algorithm Lower bd
Mgt 5 % (6 @) A < (1/€%,00) | Binary HT Trivial
NGoF C 9( B < (1/¢”, Nggt) | Est + robust HT | New

Ceo (nTS, nTS) Two-sample® Reductionto TS

D < (00,n5.r) | Goodness-of-fit |New but easy

Can estimate |

2 ) m - ~ 7
1/€ GoF 5 *Ngop = Ntg for each of these classes




X~ PY"Y ~ P& and Z ~ PY" € {PE", PE™)

The test statistic

» Based on Ingster’s L>-comparison idea
> Discretize [O,l]d cube into k = 6_% bins
> Empirical pmfs py, pv, Py based on (n, n, m) observations
> Theorem: All points on the optimal tradeoff are achieved by
T = |px = pzll5 = lpy = PII5
¥ =[0{T 2> 0]}

Note: no training, distance estimates are both wrong.
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Enter Machine Learning:
Practical tests



Kernel-based L, test (MMD)

> Real-world distributions are high-dimensional = discretization impractical.

A\ A\

~ Given Py, P, measure distance after applying feature map ¢:

MMD*(Py, ;) = [|[E¢(X) — EH(2)]|3
(proposed for two-sample testing [Sutherland et al, ICLR'17])

> We adopt this to LFHT via the same mechanism:

A\ A\ A\ A\

I(X,Y,Z) = |[Ep(X) — EpD)|I5 — |Ep(Y) —Eh(D)II; 20
> Has the same LFHT region wrt MMD(Py, Py) > € [Gerber, Jiang, Sun, P., NeurlPS'23]

—[T'| Hy]
» Train feature map to maximize S - ratio (gradient descent in kernel space)
\/ Var[T | Hy]
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LFHT for CIFAR [NeurlPS'23]
» S0 our test:
TX,Y,Z) = |[Ep(X) — E(2)|13 - |IEp(Y) — EpZ)||>? =0

» Here is an example: X=CIFAR10 vs Y=1/3 CIFAR + 2/3 Diffusion Model (DDPN)
(n =~ 10°,m ~ 101

1I(?)’\ejection Rate (alpha=0.05)

) Can detect fakes with accuracy
90% from about 300 examples.

—— MMD-M ——= UME e SCH -

Some examples of bad
diffusion images

0.0I | | | | | |
50 100 150 200 250 300 350
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Back to Higgs

[INeurlPS'23]

> |nstead of fixed two-sided error physicists use significance of discovery

» Expressed in ¢'s. For the new particle need Sc. Our road to Jo...

Significance of discovery/o

MMD-M with t,p —- UME
--A:- SCHE with top; —A— LBI

| |
) < <
o — (@\

Training set size 2n/million
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Interference rejection



Demodulation task in communication
y = s 4+ b

Received signal Signal of Interest (SOI) Noise and interference
e.g. BPSK/QPSK

Interference

U Wy Example at -9 dB Signal-to-
10 20 3 40 0 10 20 30 ©  Interference Ratio (SIR)

0 10 20 30 40
Time [us]

Frequency [MHz]
Frequency [MHz]

Frequency [MHz]

250 500 750 1000 1250 1500 250 500 750 1000 1250 1500 250 500 750 1000 1250 1500
Time [us] Time [us] Time [us]




ldea: Use signal (source) separation

y = s + b

Observed Interference

Signal
Separator

2019: let's throw DNNSs at this
2024: Ok, finally it works

Need data, standard DNNs don't work, lots of false starts,
oh people don't share their GPUs? 23




y = s + b

Observed Interference

Supervised (end-to-end)

”,‘ Create many synthetic mixtures s + b
|+ Feed pairs (v, 5) to DNN |
- Force it to learn to recover s from y
i Pros: best performance

'» Cons: need to retrain DNN for each
|_signal-interferencepair |

Two types of architectures

24

y—> Signal Separator

Bayesian MAP :

'+ Collect many samples of b
|+ Train a diffusion model to learn P, |

\» Use MAP to recover s from y |
i* Pros: one model works for all SOI
|- Cons: slow inference, performance|




Input

[ Convlx1 J

A 4

¥

| Bi-DilCony-2imodn |

@

Q

+

¥

NeurlPS'2023: WaveNet (dilated CNN)

FC = Fully connected
r Convlx1 | = ConvlXx1
[ Bi-DilConv-27 ] = Bi-directional Dilated Conv
(dilation = 27)
- (©) = Broadcast over length
r —— e — —
@ = Element-wise addition
@ = Element-wise multiplication
L = Connect to next residual layer
o)

= |Input of each residual layer

TN N S G D S S S S S B S B S .

Ski ti
[ Convlix1 ] [ ConvlXx1 } b ronnecton® >
@-v[ ConvlX1 ConvlX1 ]
Residual layeri = 0
’-----""--:."é l Residual layer i = 1 |
i Output

Residual layeri = N — 1

Description
Number of layers 30 residual layers with
dilation cycle of {1, 2, ...
512} repeated three
times
Total number of 4M

parameters

GPU compute (training)|8 GPU days

Additional training tricks:
Adaptive learning rate scheduler based on

validation loss
Mixed precision training with fp16 to speed up

inference

I. Jayashankar, G. C. F. Lee, A. Lancho, A. Weiss, Y. Polyanskiy, and G. Wornell, "Score-based source separation with applications to digital communication signals," 36t
for Advances in Neural Information Processing Systems, 2023.
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MSE [dB]

So does it work?
QPSK vs OFDM (5GNR) example

QPSK + CommSignal5G1
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QPSK + CommSignal5Gl1
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ICASSP'2024: Session on RF Challeng

e

g 1 ' R < L . - ¥ . ! ’ .""r
Can we obtain further gains from other novel ' Jswow\ |EEE Infernational - = "
‘ ICASSP Conference on Acoustics,
architectures? gziome Speech and Siangl RReEe S
\ y ._ ..Q.a Signal Prtfcessmg- The Foundation for True Intelligence - . 3 )
e N e |
L0 QPSK + CommSignal?2 ol
101+ /Learnable dilations and new data \
augmentation schemes
Technology
_ Innovation Number of parameters: 16 M
107+ Institute Number of GPUs: 4 x RTX 3090
ﬁ GPU Compute: 13 GPU days
m \- /
1073+
/Attention-based UNet and fine- \
tuning of our WaveNet baseline
1074+ ——
% Fraunhofer Number of parameters: 350M
HHI Number of GPUs: 4 x A100
10-5 | GPU Compute: 8 GPU days
30 -25 -20 -15 =-10 -5 0 \_ /
SINR [dB] N
mmmm \WaveNet Baseline New UNet architecture with bi-
—fe— KU-TII TECHNISCHE directional LSTM bottleneck layer
11 UNIVERSITAT
#— OnelnAMillion ", BERLIN Number of parameters: 60M
—— TUB Number of GPUs: 1 x RTX 6000
__(_ L.Hen GPU Compute: 4 GPU days j
9= imec IDLab Wireless UGent 27



y = s + b

Observed Interference

Supervised (end-to-end)

”,‘ Create many synthetic mixtures s + b
|+ Feed pairs (v, 5) to DNN |
- Force it to learn to recover s from y
i Pros: best performance

'» Cons: need to retrain DNN for each
|_signal-interferencepair |

Two types of architectures
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y—> Signal Separator

Bayesian MAP :

'+ Collect many samples of b
|+ Train a diffusion model to learn P, |

\» Use MAP to recover s from y |
i* Pros: one model works for all SOI
'* Cons: slow inference, performance




lefus'on mOdeIS Sample from diffusion model trained on QPSK signals

Images and RF

Real component

SOTA generative model that can learn complex LT M NN AR MAD N A
structures from signal datasets 0-
= VYVREW B e VU e
0 200 400 600 300
. Imaginary component
J \M MA FMNAL ]

0 200 400 600 800

Can diffusion models capture the underlying s .
discrete statistical structures of RF signals?

-1.0 -0.5 0.0 0.5 1.0

Constellation of generated sample After matched filtering

29



Score-based Source separation (a-RGS)

s €S c C”, b e CP statistically independent sources

/{:?

— log pb

MAP Estimation Given y = s + b

S = argmax ps|,(s|y) = argmin — log Fs(s

scS:y=s+Db scS

Gradient Descent Estimate S=s + ¢, ¢ — (

Sit1 < S; + ‘Vlogps(sz-), — Vlog pp(y — s;)

|
Score

Randomized Gaussian Smoothing with an a-posterior ( & -RGS)

Diffusion Models Model unknown priors (score functions) over s and

Gaussian Smoothing Use noise variance levels o; and «,,

ac-posterior Reweight likelihood with weight o = w

L(0) = —E; . :1ng§t (ét (9))

_w<1

~

“U,Zy

Combinatorially hard

Non-differentiable

Smoothed optimization landscape

01

10! 1

109 ;

10—1 o

x¢ =0.00
ot =0.10
ot =0.20
ot =0.30
ay =040
oy =0.50

logpg, (bu (6,y))




Results: improving SOTA

Other algos based on approximating MAP via score-learning

RRC-QPSK SOI + OFDM (QPSK) Interference

—§= Matched Filtering (MF) only
A _ =)= LMMSE Estimation + MF
W —4=  Reverse Diffusion on Interference only + MF
_q ~rm. “4= BASIS Separation + MF
10 E A ———— =4 + a-RGS (Trained SOI Model) + MF
- P 7’ % a-RGS (Analytical SOI Model) + MF
e TN,
m ‘//flhl~z—-—-{\. \
1072 = 05 . \
Lu - 7”7 “ [ > \
= I = S
\. NN
N\ ‘\\\
107 5 : L Y
) \
\
104 - |
| | | |
—25 —20 —15 —10 —9

Averaging over regularization + a-posterior give us an edge

01



Conclusion

(l) We studied signal detection (hypothesis testing) when
hypotheses are only specified through examples.

(i1) We saw minimax optimal bounds and practical algorithms

(iii) Next : Study notion of regret or instance-optimality.

More generally: Study parameter estimation, confidence
Intervals, channel coding, constellation design,...

(1v)

Thank you!
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