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Disclaimer

e Due some miscommunication between me and the organizers I
was not able to give the talk in person

e Irecorded the video asynchronous here: please enjoy!



https://drive.google.com/file/d/1Crqi6HeS6K2LtaFA6RsSRegrLDzWuIwN/view?usp=sharing

Communication-Efficient Federated Learning

Communication-Efficient Federated Learning

Learning refers to a machine learning task: you can think of regression, classification,
clustering, dimensionality reduction, structured prediction. This task can be
implemented through DL or some other ML algorithm. The setting is quite general

Federated — Dictionary definition: “set up as a single centralized unit within which each
state or division keeps some internal autonomy”. IE: One server, many remote users

Communication-Efficient: communication is limited in some sense: transmission rates,
packet loss, connectivity, delays...you hame it

J. Kone“cn'y, H. B. McMahan, F. X. Yu, P. Richt arik, A. T. Suresh, and D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

T Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” arXiv

preprint arXiv:1908.07873, 2019.




Federated learning

Introduced in the Google Al blog in 2017 oo
A\@
The idea is simple \
e Remote devices have a local dataset
e Each of the remote device trains a global Al model over this local data -
e The model updates are transmitted to the parameter server (PS)
e The PS aggregates the model updates =] Sarver coortineting
e Model is redistributed to all clients #o| the training of a
pd global Al model
..repeat until convergence / / \\

@ (ﬂ\} Bt Devices with
G| (el =% | local Al models




Federated learning

Everything is perfect, right?

-> Many advantages
€ Avoid data centralization

° Robust
° Scalable
° Private

e  Anonymous
-> Some disadvantages
4 Communication is onerous
€  Requires remote users to have uniform computational capabilities

A great unfulfilled promise — for now...

->  Very few applications - for now
€  Train a speech model on user data without collecting the user data
e Amazon Alexa
€  Train a keyboard with autocorrect features without collecting the user data
e  Google keyboard




Machine learning settings

Let us introduce some notation quickly

D = {dk}ken@n

e We have a dataset

e We have a loss function

e We have a model that is updated through the learning process until we reach the optimal solution

W) — Wy — W



Machine learning settings

Q: How does learning happen?

A: In many ways
... but the more general setting that we have found so far is also the simplest:

e Stochastic gradient descent (SGD)

oL(w,d
Wt+1:Wt+% Z ( )




Deep Learning

Deep neural networks are a variation of the above setting
Nothing more, nothing less

SGD can be performed very efficiently

The function implemented by DNNs are highly non-linear
DNNs naturally show robustness

Robustness comes at the cost of high redundancy.
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Communication-Efficient Federated Learning

Forward propagation

u® =X
w® = WOy-1

vgl) = RelL.U (ugl))
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Communication-Efficient Federated Learning

Backward propagation

1% layer (L-1)h layer L*layer Loss
@

nl@ — aLoss/aul@
el s (W(z+1))7"n(z+1)
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WD nD Mm@ W@  pl-D -1 pd) @

10



Federated learning

Ok, now back to our federated learning scenario: R S

e Many users, one central parameter server "
e Data is remains at the remote users . OIS W)
e Computation is performed at the remote users v ge = W 9t wt 9e
e Updates are sent to the PS
e PS averages updates and te model is sent v
S G
[ ] [ J [ ]
5o 2 5"
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Federated Learning

Some more details

e /\Vremote users
e The dataset of user 7} is

e Users compute their local gradient over the local dataset, let's call it g_t

1 Z 8£(Wt, dnk:)

Gnt = =
Poll Sy W

e The server aggregates the gradients

1 Deng, Yuyang, Mohammad Mahdi Kamani, and
8 = &7 Z 8nt- Mehrdad Mahdavi. "Distributionally robust
N federated averaging." Advances in neural
ne([N] information processing systems 33 (2020):
15111-15122. 12




Communication-Efficient Federated Learning

Let us assume a more realistic scenario i gt"’
-  The communication between each remote user and the PS is limited Aggregation} :Eiii
€ Rscalars
¢ Rbits
€ Inexpectation
€ Deterministic I
> The communication between the PS and the remote users is s local FL mode! s -
unbounded A 1 A
€ The PSis not limited it transmission capabilities o M st K ’
”.«:»/‘ ---------------- w q] .................. o m

N. Shlezinger, S. Rini, and Y. C. Eldar, “The communication-aware clustered federated learning problem,” in 2020 IEEE International Symposium on Information Theory (ISIT). IEEE, 2020, pp.
2610-2615.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD: Communication-efficient sgd via gradient quantization and encoding,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for communication-efficient distributed optimization,” Advances in Neural Information Processing Systems, vol. 31, 201813




Communication-Efficient Federated Learning

Finally, we have a communication problem in our hands: fit the gradients in the prescribed rate constraints
This is a rate-distortion problem, as long as:

e Source: treat the gradient across iterations as a random process
e Distortion: find how a distortion in the gradient reconstruction affects the learning accuracy

Call this problem gradient compression
Apply some classic techniques to chase the information theoretical optimal performance:

Quantization

Lossless source coding
Variable length coding
Universal compression

X X 2
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epsilon dataset
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Does this give indication that the system is robust to gradient compression? e ol
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. . oy e . cores
e More than that: we know that the system enjoys a bit of additional noise
o  Practitioners have figure out that sparsification really helps B RCV1 dataset
m Rand_k —— SGD
Keep k random gradient entries, set the rest to zero 20| e Ii,,”"kfs?
] To p_k 184 et ideal
Keep the k largest gradient entries, set the rest to zero 15
12 4
104
87 .
D. Alistarh, T. Hoefler, M. Johansson, S. Khirirat, N. Konstantinov, and C. Renggli, “The convergence of sparsified gradient ;
methods,” arXiv preprint arXiv:1809.10505, 2018. ; TS & Y S 0 85 e » ot
S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,” in Advances in Neural Information Processing ' ) T
Systems 31, 2018, pp. 4448-4459. 15




Communication-Efficient Federated Learning

Now we can formulate an “engineering” assumption

Assumption:
Gradient entries are independent and identically distributed in each layer and across each iteration

-  Now we have to discuss which distribution better fits our observations...
€ But how can we setup a number of learning instances in which we can gather enough statistical significance?
e  We can take some classical learning problem and networks
o  What else?

16



Teacher/student network

e Teacher network: is a FIXED network which we initialize Lo oo
randomly

e Apply standard Gaussian iid inputs and produce an output

e Student network: use the output of the teacher network to train
this network to produce the same set of inputs under L2 loss

Loss

Student Model

@) ‘ \
E.‘v’.
Slofe

@\

This is the simplest learning problem we can “produce” in large quantity

Goldt, Sebastian, et al. "Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup.” Advances in neural information processing systems 32
(2019).




Gradient distribution modelling

Back to our problem: modelling the gradient entry distribution

In the literature:

e 1 parameter
o  Gaussian
o Laplacian

e 2 parameters
o  Double-Weibull

More generally, sub-Weibull distribution P(|X| > ) < exp (—xl/e/K> forall x > 0.

F. Fu, Y. Hu, Y. He, J. Jiang, Y. Shao, C. Zhang, and B. Cui, “Don’t waste your bits! squeeze activations and gradients for deep neural networks via tinyscript,” in International
Conference on Machine Learning. PMLR, 2020, pp. 3304—-3314.
B. Isik, A. No, and T. Weissman, “Successive pruning for model compression via rate distortion theory,” arXiv preprint arXiv:2102.08329, 2021. 18




Gradient distribution modelling

Our proposed distribution:

= Generalized Gaussian(GenNorm)

x_
exp{— |x — ul

B
2al'(1/B) a )’}

GenNorm(x, u, a, B) =

Mean = pu
a’I'(3/B)
r@/p)

rG/Br(/B)
r(3/B)?

Variance =

Kurtosis =

0 20 40 60 80 100

B =1 - Laplace distribution
B = 2 - Normal distribution
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mmmm=  Gradient
= Histogram (upper layer of ResNet50V2): wmmmm GenNorm pdf

Norm pdf

Epoch 2
|
|
Epoch 50
|
Epoch 100

Gradient distribution modelling




mmmmm Gradient
= Histogram (upper layer of NASNetMobile): = GenNorm pdf

Norm pdf

Gradient distribution modelling




= Excess kurtosis:
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-~ Upper 50 1 -~ Upper
#- Middle #- Middle
40 1 -&— Lower -@- Lower
40 .
é 30 4 E
= £ 30 -
- =
- £
v 20 1 A
ol g 20 1
by x
L) L Y]
10 -
10 A
0+ 01
0 20 40 &0 80 100 0 20 40 60 80 100
epoch epoch

Gradient distribution modelling




. Wassersteinldistance of order 2:
W, k1) = (| 157 @) = () d)
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Gradient distribution modelling




Gradient modelling

Q: How about independence? Can we verify the independence assumption through some statistical
test?

A: yes and no...it all comes down to the p-value...

Still, we can try two tests:

-=> Sperman rank correlation coefficient:

It assesses how well the relationship between two variables can be described using a monotonic
function

-=>  Kolmogorov-Smirnov test:

is a nonparametric goodness-of-fit test and is used to determine whether two groups of samples
come from the same distribution

24



Coefficient

* Spearman’s Rank Correlation(full bits )
*eTests whether two samples have a monotonic relationship.

N .
* The ratio of epoch passing test p = i 1x>005(P0)

N
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* Kolmogorov-Smirnov Test (full bits)
* KS statistic: 0.5 -> not similar, 0.1-> similar

ResNet50V2-KS
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Gradient modelling

Are we satisfied with this modelling? Yes and no...

-> YES: We have a statistically significant set of simulations that validates the
gen-norm assumption.

€  We can use the happily assume (as engineers) that gradients can be treated as
gen-norm.

- NO

We have no theoretical justification for the parameter evolution, in time and
depth...

€ Even for the case of teacher/student network, this could be very insightful
2 Let alone new architectures, RNN, diffusion,...




Distortion modelling

Next the tricky part:

In source coding we need to describe the source and how to measure_the distance between original samples and
reconstructed samples

e What is the question we want to answer

If we perturb the weights of epsilon, how much will the accuracy be perturbed?
o  Different learning problems
o  Different network sizes
o  Different input distributions

e How can we hope to obtain a general formulation?

o  From an engineering perspective, we are happy to have an approximate measure that we can adapt to the problem at
hand
o  The teacher/student network always provides a nice setting to study

28



Distortion modelling

REMINDER:
Why do we need to know this relationship?

We want to build a quantizer: convert continuous values (i.e. fp16 numbers) to a set of discrete representations

This is a problem with a long history: for now let’s just focus on one dimensional quantizers, so that lossless

compression might be needed after quantization -



Distortion modelling

M-magnitude weighted L2 distortion

a family of distortion measures with M being a tunable hyper-parameter: M
e |DEA:
o Have a measure that bridges
m Sparsification
m L_2loss

o  We want to skew the distortion to be larger for larger gradient values, even if the error is the same

dM-1,(8,8) Z ’JJIA lg9; — 95ll2

JE d]
30



Recap

Now we can put
. -  Gradientiid Gen. norm
thlngs tO gether €  Fit the distribution at each layer and each

iteration

Optimize the hyperparameter M to minimize
the loss of accuracy from compression

Design the quantizer by minimizing the M-L2
We call this scheme M22 distortion using the Max-Lloyd quantizer

Compress each gradient, possibly apply
universal lossless compression




Loss modelling

For the one-dimensional case, can design something like this : i

. . . . . o r"‘ 1 3
e Minimize the expected distortion over the sample probability 145 (e |7 [s |9 hofiha s hefishefi7as ho bo 21

105 al

01

We can apply these two steps iteratively
tr(i+1) ]\[-I—l f
S pdf (g)dyg

i+1)
o gM pdf (g)dg

Step 1 Ck+1(i + 1)

, celt+ 1) 4 cr(2
Step2  fpya(i+1) = . ; D 2




Algorithm 1 M22. The K clients are indexed by k; B is the local mini-batch size; d is the local

dataset of each client; E is the number of local epochs; And 7 is the learning rate.
Server executes:

initialize wy
for each round r = 1,2, ... do
for cach client k € K in parallel do
gt « compy (compy(g))
end for
W1 — Wy — % 11::1 ‘A]g\

end for

Client executes: // run on each client k
w; <— download from server
Wi sparse < topK (wy) topK sparsification
Pseudocode for local iteration e = 1 to £ do
for cach batch b € B do
gF « 1 L(dp, Wy sparse) local training
end for
end for
for cach layer gF, in g* do
fitting distribution + kmeans quantization
distribution parameter <— fifDi,s"frﬂmt‘i(m(g{‘:l)
centers,thresholds <— k& — means(distribution parameter)
comp,(gr,) < quantization(centers, thresholds)
end for

transmit comp ,(gF) to server




M22

Optimization of the hyperparameter M

Is this any gqood?

- It's really hard to say, since we building a baseline is
really hard

->  We can show is that optimizing M bring benefits in
terms of accuracy

07
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0.5

0.4

g
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Simulation setting

Settings

Cifar10 dataset

Heterogeneous local data
Number of local updates=1
Number of remote users=2
Stochastic Gradient Descent

Adaptive Sparsification a5



M22

Comparison with other schemes in the
literature

Settings

Cifarl0 dataset
Heterogeneous local data
Number of local updates=1
Number of remote users=2
Stochastic Gradient Descent

Adaptive Sparsification

Uniform guantization
Quantize each gradient entry using a uniform
quantizer

8fp/4fp

Sparsification + floating point quantization
Sparsification level is chosen to meet the
rate constraints

Countsketch
Low dimensional compression using a +1/-1
projection matrix

TINYSCRIPT
Quantize using double Weibull modelling + L2
distortions
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accuracy (dR = 332kbits)
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M22

Generalizing to other Models

ResNet18 VGG16

— NOo_quant
— 332k
— M22 — 664k
— tinyscript — 996k
| | —— sketch | | — 1.3m
3 4 5 6 % 8 93 4 5 6 T 8 9
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Beyond M22

e Many things we didn't account for

Lossless compression

Per-layer rate allocation

Optimization of the learning rate & quantization
Adaptive transmission rate

©c O O O O

e Are these variations interesting?
o IMO only if you are willing to build a true application

40



Papers to reference

Liu, Yangyi, et al. "M22: A Communication-Efficient Algorithm for Federated
Learning Inspired by Rate-Distortion." arXiv preprint arXiv:2301.09269 (2023).

Chen, Zhong-Jing, et al. "Convert, compress, correct: Three steps toward
communication-efficient DNN training." arXiv preprint arXiv:2203.09044 (2022).
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Thank you for your attention!

Feel free to email me for questions!

rini.stefano@gmail.com
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