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Disclaimer

● Due some miscommunication between me and the organizers I 
was not able to give the talk in person

● I recorded the video asynchronous here: please enjoy!
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https://drive.google.com/file/d/1Crqi6HeS6K2LtaFA6RsSRegrLDzWuIwN/view?usp=sharing


Communication-Efficient: communication is limited in some sense: transmission rates, 
packet loss, connectivity, delays…you name it

3

Communication-Efficient Federated Learning

Communication-Efficient  Federated Learning

Learning refers to a machine learning task: you can think of regression, classification, 
clustering, dimensionality reduction, structured prediction.  This task can be 
implemented through DL or some other ML algorithm. The setting is quite general

Federated – Dictionary definition: “set up as a single centralized unit within which each 
state or division keeps some internal autonomy”. IE: One server, many remote users

J. Koneˇcn`y, H. B. McMahan, F. X. Yu, P. Richt´arik, A. T. Suresh, and D. Bacon, “Federated learning: Strategies for improving communication 
efficiency,” arXiv preprint arXiv:1610.05492, 2016.
T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” arXiv
preprint arXiv:1908.07873, 2019.



Federated learning

Introduced in the Google AI blog in 2017

The idea is simple

● Remote devices have a local dataset
● Each of the remote device trains a global AI model over this local data
● The model updates are transmitted to the parameter server (PS)
● The PS aggregates the model updates 
● Model is redistributed to all clients

…repeat until convergence
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Federated learning

Everything is perfect, right?

➔ Many advantages
◆ Avoid data centralization

● Robust
● Scalable
● Private
● Anonymous

➔ Some disadvantages
◆ Communication is onerous 
◆ Requires remote users to have uniform computational capabilities

A great unfulfilled promise – for now…

➔ Very few applications - for now
◆ Train a speech model on user data without collecting the user data 

● Amazon Alexa
◆ Train a keyboard with autocorrect features without collecting the user data 

● Google keyboard
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Machine learning settings

Let us introduce some notation quickly

● We have a dataset 

● We have a loss function 

● We have a model that is updated through the learning process until we reach the optimal solution 
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Machine learning settings

Q: How does learning happen? 

A: In many ways
     … but the more general setting that we have found so far is also the simplest: 

● Stochastic gradient descent (SGD)
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Deep Learning
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Deep neural networks are a variation of the above setting
Nothing more, nothing less

● SGD can be performed very efficiently 
● The function implemented by DNNs are highly non-linear
● DNNs naturally show robustness
● Robustness comes at the cost of high redundancy.



Communication-Efficient Federated Learning

Forward propagation
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Communication-Efficient Federated Learning

Backward propagation
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Federated learning

Ok, now back to our federated learning scenario:

● Many users, one central parameter server
● Data is remains at the remote users 
● Computation is performed at the remote users
● Updates are sent to the PS
● PS averages updates and te model is sent
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Parameter Server
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Federated Learning

Some more details  

●       remote users
● The dataset of user         is 

● Users compute their local gradient over the local dataset, let’s call it g_t 

● The server aggregates the gradients 
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Deng, Yuyang, Mohammad Mahdi Kamani, and 
Mehrdad Mahdavi. "Distributionally robust 
federated averaging." Advances in neural 
information processing systems 33 (2020): 
15111-15122.



Communication-Efficient Federated Learning

Let us assume a more realistic scenario 

➔ The communication between each remote user and the PS is limited
◆ R scalars
◆ R bits
◆ In expectation 
◆ Deterministic

➔ The communication between the PS and the remote users is 
unbounded
◆ The PS is not limited it transmission capabilities
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N. Shlezinger, S. Rini, and Y. C. Eldar, “The communication-aware clustered federated learning problem,” in 2020 IEEE  International Symposium on Information Theory (ISIT). IEEE, 2020, pp. 
2610–2615.
D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD: Communication-efficient sgd via gradient quantization and encoding,” Advances in Neural Information Processing Systems, 
vol. 30, 2017.
J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for communication-efficient distributed optimization,” Advances in Neural Information Processing Systems, vol. 31, 2018.



Communication-Efficient Federated Learning

Finally, we have a communication problem in our hands:  fit the gradients in the prescribed rate constraints

This is a rate-distortion problem, as long as:

● Source:  treat the gradient across iterations as a random process
● Distortion: find how a distortion in the gradient reconstruction affects the learning accuracy 

Call this problem gradient compression

Apply some classic techniques to chase the information theoretical optimal performance:

➔ Quantization
➔ Lossless source coding
➔ Variable length coding
➔ Universal compression
➔ …
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Communication-Efficient Federated Learning

Before we begin, what’s the simplest  strategy we can use? 
Does this  give indication that the system is robust to gradient compression?

● More than that: we know that the system enjoys  a bit of additional noise
○ Practitioners have figure out that sparsification  really helps

■ Rand_k
Keep k random gradient entries, set the rest to zero

■ Top_k
Keep the k largest gradient entries, set the rest to zero
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D. Alistarh, T. Hoefler, M. Johansson, S. Khirirat, N. Konstantinov, and C. Renggli, “The convergence of sparsified gradient
methods,” arXiv preprint arXiv:1809.10505, 2018.
S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,” in Advances in Neural Information Processing
Systems 31, 2018, pp. 4448–4459.



Communication-Efficient Federated Learning

Now we can formulate an “engineering” assumption

Assumption: 
Gradient entries are independent and identically distributed in each layer and across each iteration

➔ Now we have to discuss which distribution better fits our observations…
◆ But how can we setup a number of learning instances in which we can gather enough statistical significance? 

● We can take some classical learning problem and networks
○ What else?
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Teacher/student network
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● Teacher network: is a FIXED network which we initialize 
randomly

● Apply standard Gaussian iid  inputs and produce an output 
● Student network: use the output of the teacher network to train 

this network to produce the same set of inputs under L2 loss

This is the simplest learning problem we can “produce” in large quantity  

Goldt, Sebastian, et al. "Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup." Advances in neural information processing systems 32 
(2019).



Gradient distribution modelling
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Back to our problem: modelling the gradient entry distribution 

In the literature: 

● 1 parameter
○ Gaussian 
○ Laplacian 

● 2 parameters
○ Double-Weibull

More generally, sub-Weibull distribution

F. Fu, Y. Hu, Y. He, J. Jiang, Y. Shao, C. Zhang, and B. Cui, “Don’t waste your bits! squeeze activations and gradients for deep neural networks via tinyscript,” in International 
Conference on Machine Learning. PMLR, 2020, pp. 3304–3314.
B. Isik, A. No, and T. Weissman, “Successive pruning for model compression via rate distortion theory,” arXiv preprint arXiv:2102.08329, 2021.



Gradient distribution modelling

Our proposed distribution: 
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▪ Generalized Gaussian(GenNorm)
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Gradient 

GenNorm pdf 

Norm pdf 

▪ Histogram (upper layer of ResNet50V2):

Gradient distribution modelling
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Gradient 

GenNorm pdf 

Norm pdf 

▪ Histogram (upper layer of NASNetMobile):

Gradient distribution modelling
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▪ Excess kurtosis:

Gradient distribution modelling
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▪ Wasserstein distance of order 2:

DenseNet121(Upper layer) NASNetMobile(Upper layer)

Gradient distribution modelling



Gradient modelling

Q: How about independence?  Can we verify the independence assumption through some statistical 
test?

A: yes and no…it all comes down to the p-value…

Still, we can try two tests: 

➔ Sperman rank correlation coefficient:
It assesses how well the relationship between two variables can be described using a monotonic 
function

➔ Kolmogorov-Smirnov test:
is a nonparametric goodness-of-fit test and is used to determine whether two groups of samples 
come from the same distribution
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Gradient independence test 25

•  



• Kolmogorov-Smirnov Test (full bits)
• KS statistic: 0.5 -> not similar, 0.1-> similar

26Gradient independence test



Gradient modelling

Are we satisfied with this modelling? Yes and no…

➔ YES:  We have a statistically significant set of simulations that validates the  
gen-norm assumption. 
◆ We can use the happily assume (as engineers) that gradients can be treated as 

gen-norm.

➔ NO 
We have no theoretical justification for the parameter evolution, in time and 
depth…
◆ Even for the case of teacher/student network, this could be very insightful   
◆ Let alone new architectures, RNN, diffusion,...
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Distortion modelling

Next the tricky part: 

In source coding we need to describe the source and how to measure the distance between original samples and 
reconstructed samples 

● What is the question we want to answer
If we perturb the weights of epsilon, how much will the accuracy be perturbed? 

○ Different learning problems
○ Different network sizes
○ Different input distributions

● How can we hope to obtain a general formulation?
○ From an engineering perspective, we are happy to have an approximate measure that we can adapt to the problem at 

hand
○ The teacher/student network always provides a nice setting to study
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Distortion modelling

REMINDER: 
Why do we need to know this relationship?

We want to build a quantizer: convert continuous values (i.e. fp16 numbers) to a set of discrete representations 

This is a problem with a long history:  for now let’s just focus on one dimensional quantizers, so that lossless 
compression might be needed after quantization 
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Distortion modelling

M-magnitude weighted L2 distortion

a family of distortion measures with M being a tunable hyper-parameter: M
● IDEA:

○ Have a measure that bridges 
■ Sparsification 
■ L_2 loss

○ We want to skew the distortion to be larger for larger gradient values, even if the error is the same
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Now we can put 
things together
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We call this scheme M22

Recap

➔ Gradient iid Gen. norm
◆ Fit the distribution at each layer and each 

iteration

➔ Optimize the hyperparameter M to minimize 
the loss of accuracy from compression

➔ Design the quantizer  by minimizing the M-L2 
distortion using the Max-Lloyd quantizer

➔ Compress each  gradient, possibly apply 
universal lossless compression



Loss modelling

For the one-dimensional case, can design something like this

● Minimize the expected distortion over the sample probability  

We can apply these two steps iteratively 
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Step 1

Step 2



M22

33

Pseudocode 



M22

Optimization of the hyperparameter M

Is this any good? 

➔ It’s really hard to say, since we building a baseline is 
really hard

➔ We can show is that optimizing M bring benefits in 
terms of accuracy
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Simulation setting
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Settings

Cifar10 dataset

Heterogeneous local data

Number of local updates=1

Number of remote users=2

Stochastic Gradient Descent

Adaptive Sparsification



M22
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Comparison with other schemes in the 
literature 

➔ Uniform quantization 
Quantize each gradient entry using a uniform 
quantizer

➔ 8fp/4fp 
Sparsification + floating point quantization
Sparsification level is chosen to meet the 
rate constraints

➔ Countsketch 
Low dimensional compression using a +1/-1 
projection matrix 

➔ TINYSCRIPT
Quantize using double Weibull modelling + L2 
distortions

Settings

Cifar10 dataset

Heterogeneous local data

Number of local updates=1

Number of remote users=2

Stochastic Gradient Descent

Adaptive Sparsification



M22
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 R = 332k 
(left)

R = 996k
(right)
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M22
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Generalizing to other Models

ResNet18 VGG16



Beyond M22

● Many things we didn’t account for 
○ Lossless compression
○ Per-layer rate allocation
○ Optimization of the learning rate & quantization
○ Adaptive transmission rate
○ ….

● Are these variations interesting?
○ IMO only if you are willing to build a true application
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Papers to reference 
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Liu, Yangyi, et al. "M22: A Communication-Efficient Algorithm for Federated 
Learning Inspired by Rate-Distortion." arXiv preprint arXiv:2301.09269 (2023).

Chen, Zhong-Jing, et al. "Convert, compress, correct: Three steps toward 
communication-efficient DNN training." arXiv preprint arXiv:2203.09044 (2022).



Thank you for your attention!
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Feel free to email me for questions!

rini.stefano@gmail.com


