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Wireless local access network, e.g., 802.11

\

A Access point

® Client

e Knowledge of interference among access points (APs), useful
to set network configuration: dynamic channel assignments,

transmit power control, scheduling, etc..
@ Interference changes over time as environment moves
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Estimating interference among APs

@ Motivated by work in CS systems. Shrivastava et al. “PIE in
the sky: Online passive interference estimation for enterprise
WLANSs,” USENIX Conf. Net. Sys. Design Implementation.

o Earlier work injected traffic into network (active probing) to
characterize inference.

o Shrivastava leveraged CSMA/CA and Ack/Nak protocols to
characterize interference

@ In paper, small test-bed studies only. Curious about how
scaled up to large networks.

@ Some analogies with a type of group testing problem.
@ Main contribution: Quantify the required observation time as
a function of network size and topological connectivity.
e Formulated PIE as a conflict graph learning problem.
o Edge set represents pairwise interference among APs.
o Recover the interference graph with as few measurements as
possible.
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Direct interference 1

e CSMA/CA: AP holds its transmission if channel is busy.

@ APs w/in carrier sensing range: Never transmit at same time.
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Direct interference 2

e CSMA/CA: AP holds its transmission if channel is busy.

@ APs w/in carrier sensing range: Never transmit at same time.

e We model carrier sensing as reciprocal (undirected graph).
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Hidden interference 1: Hidden terminal problem

@ Hidden: Out of carrier sensing range / shielded by obstruction

N
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Hidden interference 2: Hidden terminal problem

@ Hidden: Out of carrier sensing range / shielded by obstruction

AVA

@ Collisions may happen, depends on receiver’'s location
@ Interference is asymmetric (directed graph)
e Collisions can be detected through Ack/Nak mechanism
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Interference graphs: Direct and hidden

e Use graph G = (V,&p, &) to represent the interference
where V, |V| = n is the set of access points.
e Gp = (V,&p): Graph of direct interference among APs.
o Carrier sensed since direct.
o Data: Network activation pattern X € {0,1}", 1-active,
0-inactive
o Undirected graph (reciprocal sensing)
e Gy = (V,&n): hidden interference to another AP’s clients
e When APs cannot hear each other, no direct path, e.g.,
building in way.
o AP may interfere only with a subset of another AP’s clients
o Data: activation pattern X; feedback information Y € {0,1}"
where 1-Ack, 0-Nak.
o Directed graph (asymmetric interference)

@ Objective: given k observations of X and Y, recover Gp, Gy.
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System model

@ n access points.
@ Synchronized time-slotted system.

@ In each slot, with probability p, an AP has data to send (i.i.d.
across slots)

e N: set of direct interferers for AP i, |N;| < d

@ Uniform contention for channels among APs.

@ S;: set of hidden interferers for AP i, |Si| < s

@ Probability that a client associated with AP i is interfered
with by AP j, j € Sj, is pji > Pmin

@ Consider static channel states.
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Inferring direct interference Gp

Algorithm:
e If concurrent Tx from both i and j then (i,j) ¢ Ep
@ Start from fully connected graph, gradually remove edges
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Inferring direct interference Gp

Algorithm:
e If concurrent Tx from both i and j then (i,j) ¢ Ep
@ Start from fully connected graph, gradually remove edges

Aspect of the analysis is that activation patterns not i.i.d.. across
network, the conflict graph introduces dependencies.
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Analysis and results
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e Lemma: In k steps Pr(Gp # Gp) < (5) (1 — ﬁ)
@ Analysis deals with dependence in activation patterns:

o Bound # edges by (3)

e Pr a non-interfering pair does not simultaneously transmit in a

given slot < (1 — p?/(d + 1)?)

@ Theorem 1:

o Pr(Gp # Gp) <4 if k> IO% (log (5) + log 1).

1=p7/(d+1)?

e k= 0O(d?logn) when p?/d® — 0.




Direct interferers
0000

Minimax lower bound

Theorem 2: For any o, 0 < o < 1/8 and under some mild
conditions on d and n, if

log n

then

min  max Pr(G Gp) >0
GpeGp GoEYD ( b7 D)

@ So if k scale slower then d?log n will have an error.

@ Upper bound matches lower bound up to a constant.
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Proof idea: Develop a simple family of networks

@ Pick simple, but hard-to-distinguish among, set of networks.

@ Turn into hypothesis testing problem where there are (n+ 1)
graphs Gpog, Gp1, - - - Gpp.

© Characterize distribution of activation patterns P;(X) for all
i€{0,1,...n}.

Q DKL(P(J”P,') = DKL(P0||P1) for all i € [n]

© Adapt bound from Tsybakov '08 to lower bound hypothesis
test; also lower bounds original (more difficult) problem.
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Result: Adapted from Tsybakov, '08, Thm. 2.5

Theorem: Let k € ZT, M > 2, {Gpo, ..., Gpm} € Gp be such
that

@ D (Gpi, Gpj) > 2r, for 0 < i < j < M, where Dy is the
Levenshtein (“edit”) distance.
@ 55"V Dui(Pi||Po) < alog M, with 0 < o < 1/8.
Then,
inf  sup Pr[DL(@D, Gp) > r; Gp]
Gp€Yp Gp€EYD

Z Ainf max PI’[DL(GD, GD,') Z r, GD,']
GpeGp !

> VM (g ] 2 > 0.
1+vVM log M
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Inferring hidden interference Gy: Example

o Consider AP j. At time t if the feedback Y = 0 then the
transmission was unsuccessful.
e In example let set of hidden interferers be S; = {i1, i»}

Feedback | APs active in slot
1) _ .

sz =0 |{1,2,7,i,9}
Yj( ) =1 (ignore)

vy =0 | {1,3,5,i,10}

(4) _ 3

Yj =0 | {3,5,/;,8}
Note that {/;, ix} and {1,3} both intersect all failures (and (2, 5)
does too). Can't yet determine S;. So, wait. ..
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Inferring hidden interference Gy: Example

o Consider AP j. At time t if the feedback Y = 0 then the
transmission was unsuccessful.
e In example let set of hidden interferers be S; = {i1, i»}

Feedback | APs active in slot
1) _ .

sz =0 |{1,2,7,i,9}
Yj( ) =1 (ignore)

vy =0 | {1,3,5,i,10}

(4) _ 3

Yj =0 | {3,5,/;,8}
Note that {/;, ix} and {1,3} both intersect all failures (and (2, 5)
does too). Can't yet determine S;. So, wait. ..

Feedback ‘ APs active in slot
5 .
y® =0 | {2,011}

Now the set S; = {i1, o} is the unique “minimum hitting set"
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Minimum hitting set based approach

Def: Given a collection of subsets, a set which intersects all
subsets in at least one element is called a hitting set; a minimum
hitting set is a hitting set of smallest size.
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Minimum hitting set based approach

Def: Given a collection of subsets, a set which intersects all
subsets in at least one element is called a hitting set; a minimum
hitting set is a hitting set of smallest size.
@ Given k observations define ICj(k) to be the slots in which AP
J's transmissions failed, i.e.,

Kj(k) = {t € {1,2,... k}|Y)(t) = 0}
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Minimum hitting set based approach

Def: Given a collection of subsets, a set which intersects all
subsets in at least one element is called a hitting set; a minimum
hitting set is a hitting set of smallest size.
@ Given k observations define ICj(k) to be the slots in which AP
J's transmissions failed, i.e.,

Kj(k) = {t € {1,2,... k}|Y)(t) = 0}

@ For each such failure (t € Kj(k)) define S} to be the set of
candidate hidden interferers, i.e.,.

Sf={i e Vli#j,Xi(t) =1}
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Minimum hitting set based approach

Def: Given a collection of subsets, a set which intersects all
subsets in at least one element is called a hitting set; a minimum
hitting set is a hitting set of smallest size.
@ Given k observations define ICj(k) to be the slots in which AP
J's transmissions failed, i.e.,

Kj(k) = {t € {1,2,... k}|Y)(t) = 0}

@ For each such failure (t € Kj(k)) define S} to be the set of
candidate hidden interferers, i.e.,.

Sf={i e Vli#j,Xi(t) =1}

© Our estimate of S is the minimum hitting set

8j(k) = arg min {|SI|S N5 # 0¥ t € K5(k)}
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Analysis

Lemma: At any k for any minimal hitting set Sj(k) and any i € S,
2

k
Pl ¢ §00 < (1- o= amitt - o)

o p?/(d + 1) same as earlier — lower bound on APs i, j both
active and therefore may interfere

@ pj; probability AP i interferes with AP j transmission

@ (1 — p)° probability that any other candidate minimal hitting
set of hidden interferes have nothing to send in a particular
round (and so cannot interfere)

Apply union bound to get
Pr[GAH #* GH] = Pr[Uje[n]UIESji ¢ SAJ(k)]

< ns (1 — (dfl)QPmin(l - P)s>k
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Results

e Theorem 3; Let 6 > 0 and let

1 1
k > " og (1 2 i p)5> (Iog(ns) + log 6)

(d+1)2 Pmin

then Pr[Gy = Gy] > 1— 6.
e As d gets large then simplifies to

d2
k=0(——" logn
<p2(1—p)5pmin & )

e Min-Max lower bound (Thm 4): We also derive a min-max lower
bound that show that, as d gets large, if k scales slower than

((1717)(1%13' log n) the probability of error will be bounded away
from zero.
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Numerical results: Direct interferers

Detection time (s)

I
IS

More realistic than assumptions made in analysis:
@ Simulated wireless, path loss and shadowing.
@ Poisson packet arrival process, enqueued at APs, not i.i.d.

@ Grid of 50m x 50m cells, client at center, AP placed randomly

@ Here d = 6 direct interferers on left, and 4 x 15 grid on right
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Scaling on left, in # APs (n), sub-linear (logarithmic).
Scaling on right, in max # interferers, super-linear (quadratic)
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Numerical results: Hidden interferers

@ Same set-up as previous slide
@ s =1 hidden interferers on left

@ 4 x 15 grid on right, variable s
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As on previous slide, sub-linear scaling in # APs, and super-linear
in # (hidden) interferers
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Conclusions

Recap
@ Formulated the “passive interference estimation” approach as
a statistical learning problem
@ Two sub-problems: direct and indirect (hidden) interference
@ Developed practical algorithms and proved optimality.
Comments
@ Can be thought of as a type of group testing problem.. The
interferers (direct or hidden) are the “defects” to be
determined. There are multiple group testing problems in
parallel, i.e.., the set of interferers for each AP. We don’t
control the test vectors (the randomly generated activation /
feedback patterns).
o Scaling in hidden interference, O(d? log n/p?pmin(1 — p)°):
has a poor constant for high traffic networks (p close to one).
@ We developed results for exact graph recovery, inexact may
often suffice



