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Gaussian multiple-access channel (GMAC)

Modern networks often have

▶ Very large number of users

▶ Small data payload for each user
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Many-user setting

▶ User density µ = L/n

▶ Fixed user payload logM bits/user

▶ Energy-per-bit constraint ∥c i∥2 ≤ E := Eb logM, i ∈ [L]

▶ Per-user probability of error (PUPE) 1
L

∑
i P(x̂ i ̸= x i )

Linear scaling regime

L, n→∞ with µ = L/n fixed, Eb and M do not scale with n

What is minimum Eb/N0 required for a given µ and target PUPE,
e.g. 10−3 ?

[Chen, Chen, Guo, ’17], [Ravi, Koch ’19] [Polyanskiy ’17], [Zadik,
Polyanskiy, Thrampoulidis ’19] , [Polyanskiy, Kowshik ’20] 4 / 32
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GMAC with random user activity

▶ Only a fraction of users active, decoder may not know the
exact number

▶ Errors: Misdetections, False Alarms, Active-user Errors

▶ Tradeoff between Eb/N0 and user density µ for given target
error rates

[Ngo et al. ’22], [Fengler et al. ’20], . . .
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Different from unsourced random access
[Polyanskiy ’17], [Fengler et al. ’21], [Amalladine et al. ’20], [Polyanskiy, Kowshik

’20], [Ngo et al. ’22], . . .

Here each user has separate codebook
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Previous work

▶ What can be achieved with random Gaussian codebooks and
(infeasible) maximum-likelihood decoding?

[Polyanskiy ’17], [Zadik, Polyanskiy, Thrampoulidis ’19], [Polyanskiy, Kowshik ’20]

This talk

▶ What can be achieved with efficient coding schemes?

▶ SPARC-based and coded CDMA schemes with spatial coupling

▶ Approximate Message Passing (AMP) decoding

▶ GMAC with random user activity

▶ Achievability bounds and efficient schemes
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Bounds

User payload = 8 bits

For each Eb/N0 value, find max. µ that achieves PUPE ≤ 10−3

[Zadik, Polyanskiy, Thrampoulidis ’19], [Polyanskiy, Kowshik ’20]
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Converse [ZPT19]
Achievability [ZPT19]

User payload = 200 bits

For each Eb/N0 value, find max. µ that achieves PUPE ≤ 10−3

[Zadik, Polyanskiy, Thrampoulidis ’19], [Polyanskiy, Kowshik ’20]
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Random linear coding

. . .

User 1 User 2 User L

A : A1 A2 AL
n

x : . . .x1 x2 xL

⊺

B columns

For each user i , codeword c i = Aix i

▶ Random matrices: Ai ∈ Rn×B

▶ User i ’s message encoded in x i ∈ RB ∼ PX

y =
∑
i

Aix i + w = Ax + w
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. . .

User 1 User 2 User L

A : A1 A2 AL
n

x : . . .x1 x2 xL

⊺

B columns

y =
∑
i

Aix i + w = Ax + w

Examples with IID Gaussian A
▶ Random codebooks: B = M, each x i has a single nonzero

entry =
√
E

▶ Random codebooks with binary modulation: B = M/2 and
each x i has a single nonzero entry ∈ {

√
E ,−
√
E}

▶ Random CDMA: B = 1, each xi drawn from M-ary
constellation

We will also use spatially coupled A
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Spatially coupled matrix

Combined codebook matrix A

n

BL

Gaussian entries on band-diagonal, remaining entries zero
12 / 32



IID Gaussian matrix

. . .

User 1 User 2 User L

A : A1 A2 AL
n

x : . . .x1 x2 xL

⊺

B columns

Ajk ∼iid N(0, 1/n), x i ∼iid PX

Decoding task: Recover x1, . . . , xL from

y =
∑
i

Aix i + w = Ax + w
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Approximate Message Passing decoder

. . .

User 1 User 2 User L

A : A1 A2 AL
n

x : . . .x1 x2 xL

⊺

B columns

AMP decoder tailored to prior on x = [x1, . . . , xL]

Iteratively produces estimates x̂1, x̂2, . . .

Can precisely characterize asymptotic error rate as n, L→∞:

lim
t→∞

lim
n→∞

1

L

L∑
ℓ=1

1{x̂ t
ℓ ̸= xℓ}

(Limit taken with user density L/n = µ fixed)
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Converse [ZPT19]
Achievability [ZPT19]
iid + AMP (asymptotic)
iid + AMP at 500 users

User payload = 8 bits

For each µ, we find minimum Eb/N0 that achieves PUPE ≤ 10−3

Theoretical curve is derived from a single-user effective channel
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Single-user channel

Sτ = X +
√
τG , X ∼ PX , G ∼ N(0, IB)

MAP estimator: x̂MAP(Sτ ) = argmaxx ′∈X P (X = x ′ | Sτ )

Prob. of error: Pe(τ) = P( x̂MAP(Sτ ) ̸= X )

Example: Random Gaussian codebooks

x̂MAP
j (s) =

{ √
E if sj > sk for all k ∈ [B]\j ,

0 otherwise

Pe(τ) = 1− E
[
Φ(

√
E/τ + G )B−1

]
16 / 32



Theorem

Consider iid Gaussian A and message vectors x i ∼iid PX . Then,
the asymptotic user error rate of the AMP decoder is

lim
t→∞

lim
L→∞

1

L

L∑
ℓ=1

1
{
x̂ t
ℓ ̸= xℓ

} a.s.
= Pe(τ

FP)

where the inner limit is taken with L/n = µ.

τFP is the largest stationary point of the potential function:

F(τ) = I (X ;Sτ ) +
1

2µ

[
ln
( τ

N0/2

)
−
(
1− N0/2

τ

)]
where τ ∈

[
N0
2 , N0

2 + µE
]
.
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Potential function
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Potential function
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Eb/N0 = 8.0 dB
Eb/N0 = 10.06 dB
Eb/N0 = 12.0 dB
Eb/N0 = 15.8 dB

Can we achieve Pe(τ
∗), corresponding to the global minimum?
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Spatially coupled Gaussian matrix

Combined matrix A

n/R

n

LB/C

LB

Base matrix W

R = C + ! � 1

C

!

x = [x1, x2, . . . , xL] has same form as before: x i ∈ RB ∼iid PX

[Kudekar, Pfister ’10], [Donoho, Javanmard, Montanari ’13] [Barbier and
Krzakala ’17] [Liang, Ma and Ping ’17] [Hsieh, Rush, V ’21] . . .
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Example:

L = 25 users

n = 35 channel uses

(ω = 3,C = 5) base
matrix

5 10 15 20 25

5

10

15

20

25

30

35

Ti
m

e

User

Spatial coupling induces block-wise time-division with overlap
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Theorem (Threshold Saturation)

Consider spatially coupled Gaussian A, message vectors x i ∼iid PX .

For any δ > 0, sufficiently large ω and sufficiently small ω
C we have:

lim
t→∞

lim
L→∞

1

L

L∑
ℓ=1

1
{
x̂ t
ℓ ̸= xℓ

}
≤ Pe(τ

∗ + δ) a. s.

where the inner limit is taken with L/n = µ.

Here τ∗ is the global minimum of the potential function:

F(τ) = I (X ;Sτ ) +
1

2µ

[
ln
( τ

N0/2

)
−
(
1− N0/2

τ

)]
where τ ∈

[
N0
2 , N0

2 + µE
]
.

Hsieh, Rush, V, Near-Optimal Coding for Many-user Multiple Access Channels,
JSAIT, March 2022.
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User payload = 8 bits

For each µ, we find minimum Eb/N0 that achieves PUPE ≤ 10−3
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. . .

User 1 User 2 User L

A : A1 A2 AL
n

x : . . .x1 x2 xL

⊺

B columns

▶ Complexity of AMP decoder scales exponentially with B

Multiple transmissions needed for larger payloads (∼ 100 bits)

▶ User information may be coded (e.g., using LDPC outer code)

23 / 32



Coded Binary CDMA

A =


x . . . . . .

x
a1 . . . . . . aLy . . . . . .

y
 , X =

← x1 →
...

← xL →



For each user i :

▶ Signature sequence ai ∈ Rñ

▶ Codeword x i is row i of the “signal” matrix X ∈ {±
√
E}L×d

▶ Each x i is a codeword of (k , d) linear code

Y =
L∑

i=1

aix i + noise = AX + noise

▶ Number of channel uses n = ñd

24 / 32



AMP Decoder

Starting with initializer X 0 = 0, for t ≥ 1

Z t = Y − AX t +
1

n
Z t−1

[
L∑

ℓ=1

η′t−1

(
st−1
ℓ

)]⊤

S t = A⊤Z t + X t ,

X t+1 = ηt
(
S t

)

For each t:

Empirical distribution of rows of (S t − X )→ N(0,Σt)

State evolution to iteratively compute d × d covariance Σt

⇒ ηt estimates X from observation in Gaussian noise
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Z t = Y − AX t +
1

n
Z t−1

[
L∑

ℓ=1

η′t−1

(
st−1
ℓ

)]⊤

S t = A⊤Z t + X t ,

X t+1 = ηt
(
S t

)
, X̂

t+1
= ht(S t) (hard decision)

Theorem [Liu, Hsieh, V ’24]

Let ηt be Lipschitz for t ≥ 1. Then for each t ≥ 1,

lim
L→∞

1

L

L∑
ℓ=1

1{x̂ t+1
ℓ ̸= xℓ} = P

(
ht

(
x̄ + g t

)
̸= x̄

)
▶ x̄ ∈ {±

√
E}d uniformly distributed among 2k codewords

▶ g t ∈ Rd ∼ N(0,Σt) independent of x̄

Can extend result to spatially coupled A
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Choice of denoiser ηt

Z t = Y − AX t +
1

n
Z t−1

[
L∑

ℓ=1

η′t−1

(
st−1
ℓ

)]⊤

S t = A⊤Z t + X t ,

X t+1 = ηt
(
S t

)
, X̂

t+1
= ht(S t) (hard decision)

Bayes-optimal denoiser ηt(s) = E[x̄ | x̄ + g t = s]
Requires averaging over 2k codewords from (k, d) code

BP denoiser when x̄ drawn from binary LDPC code

ηBP: BP decoding on each row of S t

AMP with BP denoisers: [Amalladine et al. ’22], [Ebert et al., ’23]
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User payload = 120 bits, Target BER 10−4
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Coded binary CDMA is (almost) all you need!
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User payload = 360 bits, Target BER 10−4
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Many-user GMAC with random user activity

▶ Each user active with probability α

▶ Errors: Misdetections, False Alarms, Active-user Errors

▶ Tradeoff between Eb/N0 and user density µ for given target
error rates
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CDMA-based coding

A =


x . . . . . .

x
a1 . . . . . . aLy . . . . . .

y
 , X =

← x1 →
...

← xL →



▶ If user i is inactive, x i = 0. Otherwise x i ∈ {±
√
E}d

Y =
L∑

i=1

aix i + noise = AX + noise

▶ AMP decoder with denoiser tailored to row-wise prior on X
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Target max{pMD, pFA}+ pAUE < 0.01

User payload k = 6, and α = 0.3
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iid Gaussian design + AMP
SC Gaussian design + AMP
achievability

▶ Achievability bounds: random codebooks and ML decoding

▶ Proof techniques build on [Ngo et al. ’22] unsourced setting
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Ongoing and Future Work

▶ Coded CDMA with longer LDPC codes

▶ Improved bounds for random user activity

▶ Extension to unsourced random access

K. Hsieh, C. Rush, and R. Venkataramanan, Near-optimal coding for
many-user multiple access channels, IEEE Journal on Selected Areas in
Information Theory, March 2022

X. Liu, K. Hsieh, and R. Venkataramanan, Coded many-user multiple
access via AMP, https://arxiv.org/abs/2402.05625, 2024

X. Liu, P. Pascual Cobo, and R. Venkataramanan, Many-user multiple

access with random user activity (coming soon)
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