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Motivation

Computing in the presence of noise

E.g. n sensors make noisy measurements of signals x1, . . . , xn

x1

Controller

x2 xn

Controller adaptively probes one of the sensors to make a measurement.

Goal: Compute a function f (x1, . . . , xn) from noisy measurements

Applications
Fault tolerance
Active ranking
Recommendation systems
· · ·
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Problem Statement (OR Function)

Let x = (x1, . . . , xn) ∈ {0, 1}n.
OR function:

OR(x) =

{
1, if ∃ i ∈ [n] : xi = 1

0, otherwise.

Goal: Find an estimate of OR(x) using noisy readings.

At kth time step, submit query Uk = xi for some i ∈ [n].
Receive noisy response

Yk = Uk ⊕ Zk ,

where Zk ∼ Bern(p), for some fixed and known p < 1/2.

After T queries, compute estimate ÔR of OR(x).

Question: How many queries are needed to find ÔR s.t.

sup
x

P(ÔR ̸= OR(x)) ≤ δ?
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Related Work (OR Function)

Noisy boolean decision trees
Computation of boolean functions in the presence of noise
Ω(n log n) queries are necessary when querying strategy is non-adaptive123

O(n) queries are sufficient when querying strategy is adaptive using a tournament
algorithm4

Multi-armed bandits
Evaluating OR function of n bits is the same as evaluating their maximum.
Best arm identification problem
Reward is Bern(p) when bit is 0, and Bern(1− p) when bit is 1

O
(

n log(1/δ)

(1−2p)2

)
queries are sufficient5

Dependence on p is not tight in prior work.

1R. L. Dobrushin and S. I. Ortyukov. “Lower bound for the redundancy of self-correcting arrangements of unreliable functional elements”. In: Problemy
Peredachi Informatsii 13.1 (1977), pp. 82–89.

2N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis. “On a lower bound for the redundancy of reliable networks with noisy gates”. In: IEEE Trans. Inf.
Theory 37.3 (1991), pp. 639–643.

3P. Gács and A. Gál. “Lower bounds for the complexity of reliable Boolean circuits with noisy gates”. In: IEEE Trans. Inf. Theory 40.2 (1994),
pp. 579–583.

4U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
5J.-Y. Audibert, S. Bubeck, and R. Munos. “Best arm identification in multi-armed bandits.”. In: COLT (2010), pp. 41–53.
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Main Result

Theorem 1 (OR function)

It is both sufficient and necessary to use

(1± o(1))
n log 1

δ

DKL(p∥1− p)

queries in expectation to compute OR function with vanishing error probability δ = o(1).

DKL(p∥1− p): Kullback-Leibler (KL) divergence between Bern(p) and Bern(1− p)

Lower bound: Based on Le Cam’s two point method

Upper bound: Devise an adaptive querying strategy to compute the OR function
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Lower Bound: Le Cam’s Two Point Method (1/3)

Lemma (Le Cam’s Two Point Lemma)

Let (Px)x∈X be a family of distributions, and let ℓ : X × X̂ → R+ be any loss function.
Let x1, x2 ∈ X satisfy that

ℓ(x1, x̂) + ℓ(x2, x̂) ≥ ∆, ∀ x̂ ∈ X̂ .

Then,

inf
x̂

sup
x∈X

Ex [ℓ(x , x̂)] ≥
∆

2
(1− ∥Px1 −Px2 ∥TV )

For computing the OR function, use X = {0, 1}n, X̂ = {0, 1} and

ℓ(x, x̂) = 1{OR(x) ̸= x̂},

and Px is the distribution of observations when the underlying sequence is x.
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Lower Bound: Le Cam’s Two Point Method (2/3)

Consider length-n sequences:

x0 ≜ all-zero sequence,
xj ≜ 1 in jth position, and zeros everywhere else.

For any x̂ ∈ {0, 1},

1{OR(x0) ̸= x̂}+ 1{OR(xj) ̸= x̂} ≥ 1

Le Cam’s two point lemma implies

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

2

(
1− ∥Px0 − Pxj ∥TV

)

(b)
=

1

4
exp (−Ex0 [Tj ]DKL(p∥1− p)) ,

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 7 / 15



Lower Bound: Le Cam’s Two Point Method (2/3)

Consider length-n sequences:

x0 ≜ all-zero sequence,
xj ≜ 1 in jth position, and zeros everywhere else.

For any x̂ ∈ {0, 1},

1{OR(x0) ̸= x̂}+ 1{OR(xj) ̸= x̂} ≥ 1

Le Cam’s two point lemma implies

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

2

(
1− ∥Px0 − Pxj ∥TV

)

(b)
=

1

4
exp (−Ex0 [Tj ]DKL(p∥1− p)) ,

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 7 / 15



Lower Bound: Le Cam’s Two Point Method (2/3)

Consider length-n sequences:

x0 ≜ all-zero sequence,
xj ≜ 1 in jth position, and zeros everywhere else.

For any x̂ ∈ {0, 1},

1{OR(x0) ̸= x̂}+ 1{OR(xj) ̸= x̂} ≥ 1

Le Cam’s two point lemma implies

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

2

(
1− ∥Px0 − Pxj ∥TV

)
(a)

≥ 1

4
exp

(
−DKL(Px0 ,Pxj )

)

(b)
=

1

4
exp (−Ex0 [Tj ]DKL(p∥1− p)) ,

where:

(a): Bretagnolle-Huber inequality

(b): Divergence decomposition (Tj is the number of times bit j is queried)

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 7 / 15



Lower Bound: Le Cam’s Two Point Method (2/3)

Consider length-n sequences:

x0 ≜ all-zero sequence,
xj ≜ 1 in jth position, and zeros everywhere else.

For any x̂ ∈ {0, 1},

1{OR(x0) ̸= x̂}+ 1{OR(xj) ̸= x̂} ≥ 1

Le Cam’s two point lemma implies

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

2

(
1− ∥Px0 − Pxj ∥TV

)
(a)

≥ 1

4
exp

(
−DKL(Px0 ,Pxj )

)
(b)
=

1

4
exp (−Ex0 [Tj ]DKL(p∥1− p)) ,

where:

(a): Bretagnolle-Huber inequality

(b): Divergence decomposition (Tj is the number of times bit j is queried)

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 7 / 15



Lower Bound: Le Cam’s Two Point Method (3/3)

Recall

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

4
exp (−Ex0 [Tj ]DKL(p∥1− p)) ,

where Tj is the number of times bit j is queried.

Bound holds for each j .

Since
∑n

j=1 Ex0 [Tj ] ≤ T , there must exist j∗ s.t. Ex0 [Tj∗ ] ≤ T/n. Thus,

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

4
exp

(
−T · DKL(p∥1− p)

n

)
,

which gives the lower bound.
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Upper Bound: Proposed NoisyOR Algorithm (1/3)

Proposed NoisyOR algorithm uses two subroutines:
EstimateSingleBit: estimates the value of a single bit using noisy queries
TournamentOR: existing algorithm that computes the OR function

Algorithm 1 EstimateSingleBit

Input: Single bit x , error probability δ.
Output: Estimate of x .

1: Set t ← 1.
2: while true do
3: Make noisy observation yt of bit x .
4: Set α← P(X = 1 |Y t = y t).
5: Set t ← t + 1.
6: if α ≥ 1− δ then return 1.
7: else if α ≤ δ then return 0.

EstimateSingleBit has error probability at most δ and uses at most

(1 + o(1))
log(1/δ)

DKL(p∥1− p)

queries in expectation.
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Upper Bound: Proposed NoisyOR Algorithm (2/3)

TournamentOR: existing algorithm that computes the OR function67

x1 x2 x3 x4 xn−1 xn

TournamentOR has error probability at most δ and uses at most O(n) queries.

6U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
7B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.
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Upper Bound: Proposed NoisyOR Algorithm (3/3)

Proposed NoisyOR algorithm

Algorithm 2 NoisyOR

Input: Bit sequence x = (x1, . . . , xn), error probability δ.
Output: Estimate of OR(x).

1: Set y← ∅.
2: for i ∈ [n] do
3: if EstimateSingleBit(xi , δ/2) = 1 then
4: Append xi to y.

5: if length(y) = 0 then
6: return 0.
7: else if length(y) ≥ max(log n, nδ log 1

δ
) then

8: return 1.
9: else

10: return TournamentOR(y, δ/2)

NoisyOR has error probability at most δ and uses at most

(1 + o(1))
n log(1/δ)

DKL(p∥1− p)

queries in expectation.
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Numerical Experiments
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OR function, n = 100, delta = 0.01

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 12 / 15



Beyond the OR Function (1/2)

Threshold function: For x ∈ {0, 1}n,

THk(x) ≜

{
1 if

∑n
i=1 xi ≥ k,

0 otherwise.

Notice that OR(x) = TH1(x).

Theorem 2 (THk function)

For k = o(n), it is both sufficient and necessary to use

(1± o(1))
n log k

δ

DKL(p∥1− p)

queries in expectation to compute THk with a vanishing error probability δ = o(1).
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Beyond the OR Function (2/2)

Noisy Comparison Model: When x ∈ Rn,

At kth time step, query (Uk ,Vk ) ≜ (xi , xj ) for i ̸= j .
Receive noisy response Yk = 1{Uk<Vk} ⊕ Zk , where Zk ∼ Bern(p).

Function Description Optimal Query complexity (δ = o(1))

MAX
Returns index of max-
imum element

n log 1
δ

DKL(p∥1− p)

SEARCH
Takes w as input and
returns i s.t. xi <
w < xi+1 (x is sorted)

log n

1− H(p)

SORT89 Sorts x

[
1

1− H(p)
+

1

DKL(p∥1− p)

]
n log n

8Z. Wang, N. Ghaddar, B. Zhu, and L. Wang. Noisy Sorting Capacity. 2023. arXiv: 2202.01446.
9Y. Gu and Y. Xu. “Optimal Bounds for Noisy Sorting”. In: STOC 2023, 1502–1515.
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Final Remarks

Optimal bounds for noisy computing: OR, THk , MAX, SEARCH, SORT functions

Extensions:
General channel models
Different performance metric
Unknown p and/or query-dependent p

Arxiv version: https://arxiv.org/abs/2309.03986

Any questions?
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