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Social network de-anonymization (Narayanan and Shmatikov 2008)



Combinatorial optimization formulation

• Let A and B be the adjacency matrices of the two (simple) graphs

• Quadratic assignment problem (Koopmans and Beckmann 1957)

π̂ = argmax
σ

∑

i<j

Ai,jBσ(i),σ(j)
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∑
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Ai,jBσ(i),σ(j)

• Zero-error alignment: guarantee π̂ = π in the worst case

• Complexity: NP-hard

• What about the average case?

◮ Can we solve the problem for most typical practical networks? → a new random graph model

◮ What if we are fine with a small but vanishing amount of error? → a new performance metric

Graph alignment problem

Lele Wang (UBC) Attributed Graph Alignment BIRS Workshop 2024 3 / 24



Correlated Erdős–Rényi graph pair (G1, G
′
2
) ∼ G(n, p, su)
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Correlated Erdős–Rényi graph pair (G1, G
′
2
) ∼ G(n, p, su)

Lele Wang (UBC) Attributed Graph Alignment BIRS Workshop 2024 4 / 24

1

p
2

3

4

1

G

G1

psu
2

3

4

subsampling 1
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Correlated Erdős–Rényi graph pair (G1, G
′
2
) ∼ G(n, p, su)

Lele Wang (UBC) Attributed Graph Alignment BIRS Workshop 2024 5 / 24

1

G1 G′

2

psu
2

3

4

2

3

4

1



Correlated Erdős–Rényi graph pair (G1, G
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• Exact alignment: Estimation π̂(G1, G
′
2) such that for uniform Π,

lim
n→∞

P(π̂(G1, G
′
2) = Π) = 1
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Correlated Erdős–Rényi graph pair (G1, G
′
2
) ∼ G(n, p, su)

• Exact alignment: Estimation π̂(G1, G
′
2) such that for uniform Π,

lim
n→∞

P(π̂(G1, G
′
2) = Π) = 1

• Achievability: Set of (n, p, su) s.t. exact alignment is achievable

◮ Information-theoretic limits
◮ Efficient algorithms

Lele Wang (UBC) Attributed Graph Alignment BIRS Workshop 2024 5 / 24

1

G1 G′

2

psu
2

3

4

2

3

4

1
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Special case: Random graph isomorphism problem (su = 1)

• G ∼ ER(n, p)

• G1 = G2 = G

• G′
2 isomorphic to G1
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Special case: Random graph isomorphism problem (su = 1)

• G ∼ ER(n, p)

• G1 = G2 = G

• G′
2 isomorphic to G1

Theorem (Babai, Erdős, and Selkow 1980, Czajka and Pandurangan 2008)

Assume p ≤ 1/2

• If np ≥ log n+ ω(1), ∃ a polynomial-time algorithm

• If np ≤ log n− ω(1), no algorithms exist

Conjecture for correlated Erdős–Rényi alignment

• If nps2u ≥ log n+ ω(1), ∃ an algorithm

• If nps2u ≤ log n− ω(1), no algorithms exist

• No polynomial-time algorithms achieve the IT limit
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• Seeded graph alignment

◮ Information-theoretic limit: converse: Mossel and Xu (2020)

◮ Polynomial-time algorithm: Yartseva and Grossglauser (2013), Korula and Lattanzi (2014),
Lyzinski, Fishkind, and Priebe (2014),
Fishkind, Adali, Patsolic, Meng, Singh, Lyzinski, and Priebe (2019),
Shirani, Garg, and Erkip (2017), Mossel and Xu (2020)

• Bipartite graph alignment

◮ Information-theoretic limit: Cullina, Mittal, and Kiyavash (2018)

◮ Polynomial-time algorithm: Hungarian algorithm

• Many others...
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What if graph structure is not enough?
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We do know more ...
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Attributes as vertices
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Model: Attributed Erdős–Rényi graph pair (G1, G
′
2
) ∼ G(n, p, su;m, q, sa)

• Base graph G generation
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Model: Attributed Erdős–Rényi graph pair (G1, G
′
2
) ∼ G(n, p, su;m, q, sa)

Lele Wang (UBC) Attributed Graph Alignment BIRS Workshop 2024 12 / 24

1

p

q

2

3

4

1

G

G1

psu

qsa

2

3

4

subsampling 1
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Result 1: IT limits (simplified)
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https://arxiv.org/abs/2102.00665

Under mild conditions

1− p = Θ(1), 1− q = Θ(1),

su = Ω( (log n)2√
n

),

sa = Ω( (log n)1.5√
m

)

Achievability

nps2u +mqs2a ≥ log n+ ω(1)

Converse

nps2u +mqs2a ≤ log n− ω(1)



Result 1: IT limits (simplified)

log n± ω(1)

mqs2
a

nps2
u

IT-feasible

Infeasible

log n± ω(1)

Lele Wang (UBC) Attributed Graph Alignment BIRS Workshop 2024 14 / 24

https://arxiv.org/abs/2102.00665

Under mild conditions

1− p = Θ(1), 1− q = Θ(1),

su = Ω( (log n)2√
n

),

sa = Ω( (log n)1.5√
m

)

Achievability

nps2u +mqs2a ≥ log n+ ω(1)

Converse

nps2u +mqs2a ≤ log n− ω(1)



Result 1: IT limits (simplified)

log n± ω(1)

mqs2
a

nps2
u

feasibleinfeasible

log n± ω(1)

Lele Wang (UBC) Attributed Graph Alignment BIRS Workshop 2024 14 / 24

https://arxiv.org/abs/2102.00665

Erdős–Rényi graph alignment

Recovers the best known IT limits

by Cullina and Kiyavash (2017)



Benefit from attribute information
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Relation to other models

• When m = 0 or qsa = 0, reduces to correlated Erdős–Rényi graph alignment
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Relation to other models

• When m = 0 or qsa = 0, reduces to correlated Erdős–Rényi graph alignment

• When p = q and su = sa, reduces to seeded graph alignment

• When psa = 0, reduces to bipartite graph alignment
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Specialization to seeded graph alignment: p = q, su = sa
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Specialization to seeded graph alignment: p = q, su = sa

• For fair comparison, assume n unmatched vertices and m seeds
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Specialization to seeded graph alignment: p = q, su = sa

• For fair comparison, assume n unmatched vertices and m seeds

Best-known results

• Achievability: unseeded achievability by Cullina and Kiyavash (2017)

(m+ n)ps2u ≥ log(m+ n) + ω(1)

• Converse: Mossel and Xu (2020) for m = O(n)

(m+ n)ps2u ≤ log(m+ n) +O(1)
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(m+ n)ps2u ≥ log(m+ n) + ω(1)

• Converse: Mossel and Xu (2020) for m = O(n)

(m+ n)ps2u ≤ log(m+ n) +O(1)

Our result: Tight threshold

• Achievability: strict improvement

(m+ n)ps2u ≥ log n+ ω(1)

• Converse: extension to m = ω(n)

(m+ n)ps2u ≤ log n− ω(1)
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Specialization to bipartite graph alignment: psu = 0
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Specialization to bipartite graph alignment: psu = 0

• Studied in the more general setting of database alignment (Cullina et al. 2018)

Best-known results

• Achievability:
1

2
I◦2 (Q

⊗m) ≥ log n+ ω(1)

• Converse: for constant ǫ ∈ (0, 1)

1

2
I◦2 (Q

⊗m) ≤ (1− ǫ) log n

where Q = ( q00 q01
q10 q11 ), I

◦
2 (A) = − log tr((ZZT )2), Zij =

√
Aij
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Specialization to bipartite graph alignment: psu = 0

• Studied in the more general setting of database alignment (Cullina et al. 2018)

Refined best-known results

• Achievability:

−m
2

log(1− 2ψa) ≥ log n+ ω(1)

• Converse: for constant ǫ ∈ (0, 1)

−m
2

log(1− 2ψa) ≤ (1− ǫ) log n

where ψa = (
√
q11q00 −√

q01q10)
2
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Efficient Algorithms
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Conjectured information-computation gap in correlated Erdős–Rényi model
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• IT limits: Cullina and Kiyavash (2017)
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• IT limits: Cullina and Kiyavash (2017)

• Poly-time algorithm with correlation at Otter’s constant: Mao, Wu, Xu, and Yu (2023)
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• IT limits: Cullina and Kiyavash (2017)

• Poly-time algorithm with correlation at Otter’s constant: Mao, Wu, Xu, and Yu (2023)

• Information-computation gap conjecture: Yu (2023), Mao, Wu, Xu, and Yu (2022)



Conjectured information-computation gap in correlated Erdős–Rényi model
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Result 2: Efficient algorithms for attributed graph alignment
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With a tiny bit of attribute information (e.g. mqs2a = 1/
√
log n),

poly-time algorithms can achieve exact alignment with vanishing correlation!
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Polynomial-time feasible

Θ(1)

npsu = no(1) npsu = nΘ(1)

Specialization to seeded graph alignment (p = q, su = sa)

Strictly improve the best known achievable region for poly-time algorithms

by Shirani, Garg, and Erkip (2017), Mossel and Xu (2020)
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su

npsu

√
0.338

1
IT limit nps2u = log n

Impossible

n−3/16+δ

Unknown

Polynomial-time feasible

Θ(1)

npsu = no(1) npsu = nΘ(1)

Specialization to bipartite graph alignment (psu = 0)

Alternative poly-time algorithm for the Hungarian algorithm

with a smaller time complexity when m = o(n)
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Efficient algorithms by subgraph counting

• Idea: use the occurrences of a chosen graph structure as vertex feature

◮ Identifying clusters in graphs: Mossel et al. (2014)

◮ Testing correlation between two graphs: Mao et al. (2022)

◮ Graph alignment: Barak et al. (2019b), Mao et al. (2023)
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• Idea: use the occurrences of a chosen graph structure as vertex feature

◮ Identifying clusters in graphs: Mossel et al. (2014)

◮ Testing correlation between two graphs: Mao et al. (2022)

◮ Graph alignment: Barak et al. (2019b), Mao et al. (2023)

• For attributed graphs: We identify a rooted subgraph involving both attributes and users
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Proposed subgraph counting algorithm
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• Construct feature vector for each user vertex
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W1,{A,B}(G1) = 4

• Construct feature vector for each user vertex

e.g.: X1 = (W1,{A,B}(G1),W1,{A,C}(G1),W1,{B,C}(G1))
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Proposed subgraph counting algorithm

• Similarity score between user i from G1 and j from G′
2

Γij , Xi ·Xj =
∑

T :|T |=k

Wi,T (G1)Wj,T (G
′
2).

• Key observation: For any wrong pair j 6= Π(i),

E[Wi,T (G1)Wj,T (G′
2)

︸ ︷︷ ︸

almost independent

] < E[Wi,T (G1)WΠ(i),T (G
′
2)

︸ ︷︷ ︸

positively correlated

],
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],

which further implies
E[Γij ] < E[Γi,Π(i)].

ΓijE[Γi,Π(i)]E[Γij ]

correct pairwrong pair

τ
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Summary

• Propose attributed Erdős–Rényi graph pair model

◮ Understand the benefit of attributes

◮ Unify existing models

• Characterize the information-theoretic limits

◮ Improve IT limits for existing models

• Propose polynomial-time algorithms

◮ Improve efficient algorithms for existing models

◮ Shed new light on information-computation gap
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Summary

• Propose attributed Erdős–Rényi graph pair model

◮ Understand the benefit of attributes

◮ Unify existing models

• Characterize the information-theoretic limits

◮ Improve IT limits for existing models

• Propose polynomial-time algorithms

◮ Improve efficient algorithms for existing models

◮ Shed new light on information-computation gap

Thank you!
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Proof Sketch for IT limits
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Key ideas in achievability
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π̂MAP = argminπedge misalignment between G1 and π−1(G′
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• Correlated Erdős–Rényi model

π̂MAP = argminπedge misalignment between G1 and π−1(G′
2)

• Attributed Erdős–Rényi model

MAP estimator = weighted minimum misalignment

π̂MAP = argminπ{w1∆
u
π + w2∆

a
π},

where

∆u
π : user-user edge misalignment between G1 and π−1(G′

2)
∆a

π : user-attribute edge misalignment between G1 and π−1(G′
2)

w1 = log
(

p11p00
p10p01

)

, w2 = log
(

q11q00
q10q01

)

• Error bounding techniques (Cullina and Kiyavash (2017)):

◮ Orbit decomposition
◮ Generating functions



Key ideas in converse
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|Aut| ≥ |Autiso |

1

G1 ∧G2

2

3

4



Key ideas in converse

Lele Wang (UBC) Attributed Graph Alignment BIRS Workshop 2024 24 / 24

• P(π̂MAP = Π) ≤ 1
|Aut(G1∧G2)|

• Correlated Erdős–Rényi model

|Aut| ≥ |Autiso |

• Attributed Erdős–Rényi model

|Aut| ≥ |Autind | ≥ |Autiso |

isolated vertices

indistinguishable vertices

automorphism
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all k ∈ V \ {i, j}, i ∼ k iff j ∼ k
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• P(π̂MAP = Π) ≤ 1
|Aut(G1∧G2)|

• Correlated Erdős–Rényi model

|Aut| ≥ |Autiso |

• Attributed Erdős–Rényi model

|Aut| ≥ |Autind | ≥ |Autiso |

isolated vertices

indistinguishable vertices

automorphism

1

G1 ∧G2

2

3

4

i and j are indistinguishable if for

all k ∈ V \ {i, j}, i ∼ k iff j ∼ k

Side result: threshold of the

existence of indistinguishable

pairs in attributed graphs



Motivation 2: Biomedical image analysis from multiple views

Brain connectome network analysis (Zhang, He, Chen, Luo, Zhou, and Wang 2018)

Lele Wang (UBC) Attributed Graph Alignment BIRS Workshop 2024 24 / 24



Motivation 3: Protein with similar functions across different species

Uncover relation and transfer biological knowledge between different

species (Kazemi, Hassani, Grossglauser, and Modarres 2016)
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