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The multiple support recovery problem

m Samples X1, ..., X, in R? each sample has k nonzero entries

m For each X;, the location of the nonzero entries is called the
support of X;, denoted supp(X;)

m The support of each sample is drawn from a small set of allowed
supports

supp(X;) € {S1,...,S¢}

where S; are subsets of [d] of cardinality k
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The multiple support recovery problem

m Example: Two allowed supports S; = {1,2} and Sz = {3,5}

X1 Xo X3 Xp_9 Xp_1 Xn
m We only observe low-dimensional linear projections
Y, =9, X;, i € [n],
where ®; € R™*4 with m < d

m Given {®;,Y;}" |, recover {S1,...,S¢}
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Application to feature clustering

m Coordinate clustering/feature clustering problems can be
understood using our formulation
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m Distributed user profiling

m Users have profile vectors indicating ratings/preferences for features
(e.g. type of website visited)

m For a given population, center wants to find features that occur
together
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Related work

Mixed linear models

m Used to model heterogeneous data: population can be divided into
groups, linear model within each group

m Similar setting:
Mixture of linear regressions [De Veaux 1989; Chen 2013;
Chaganty 2013; Yin 2019; Li 2020]
Phase retrieval [Candes 2013; Netrapalli 2014; Eldar 2014;
Jaganathan 2015]
Learning mixtures of low-rank models [Chen 2021]

m Usually focus either on worst-case formulation or on recovering
data vectors

m Current algorithms require at least roughly k measurements per
sample — can this be reduced?
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The common support case (£ = 1)

X1 X2 -

N

\ k:?m

measurement-rich regime . .
& measurement-constrained regime

m Can operate with m < k measurements per sample unlike
conventional algorithms, but require more samples

L. Ramesh, C. R. Murthy, and H. Tyagi. “Phase Transitions for Support
Recovery from Gaussian Linear Measurements”, ISIT 2021 5
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m Two sets of unknowns: labels associating measurements to
supports, and the underlying supports

m Given knowledge of the labels, can group together measurements
corresponding to same support and recover each support

m Alternatively, if we have roughly k measurements per sample, can
use standard algorithms on each sample and recover each support
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Multiple supports (¢ > 1)

m s it possible to recover (Si,...,Sy) when labeling not known and
m < k?

Yes, we will see an efficient algorithm for multiple support
recovery from very few measurements

m How many samples are required for recovery?

We can approximately recover all the supports using roughly
(k¢/m)* samples
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From fully observed data

m We will assume supports to be disjoint, and a constant fraction of
samples corresponding to each support

m The sample covariance matrix has a block structure (under
permutation of its rows and columns)

= Permute rows

and columns

XxT HlXXTH2
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From fully observed data

m Unknown permutation can be found using eigenvectors of sample
covariance matrix, after normalizing each row by its row sum

ﬁg -
— X Second leading eigenvector +

X bdl

m When there are ¢ blocks (supports), use the top-¢ eigenvectors and
a nearest neighbor step

[F. McSherry, 2001]; [Ng et al., 2002]; [Newman, 2006]. 9
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From linear measurements

m Can a similar approach be used when we only have linear
measurements of the samples?

Yes, we will run spectral clustering using coordinate-wise variance
estimate a; = (®,'Y;) o (®,Y;)
large, when (u,v) in same support,
Qg Ay =

small, when (u,v) in different supports.

m Performing spectral clustering on 37 ; a;a; € R¥? is
computationally intensive

We will first estimate the union Uf{_;S;, and run spectral clustering
restricted to the union

10
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The algorithm

m Step 1. Compute variance estimates a; = (®; Y;) o (®]Y;) € RY for
each i € [n]

m Step 2. Compute sample mean (1/n)> 1, a;, top k¢ coordinates
give estimate Sy, for the union

m Step 3. Perform spectral clustering on sample covariance matrix

T=(1/n) ?:l(ai)gun(ai)gun to partition the union into ¢ supports

m Second order statistic recovers the union, fourth order statistic
required to partition the union

11
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Sample complexity of multiple support recovery
m Our analysis assumes a subgaussian generative model for the
samples and measurement matrices

m We seek approximate recovery of the supports up to permutation
of the support labels

m The smallest n for which an estimator satisfying the recovery
criterion exists is the sample complexity n*

Let (logkf)? < m < k. Then,
4
m

12



Proof Sketch



Analyzing the two steps

m Recovery of the union. Can recover the union with roughly
k2% log(d/m) samples'

L. Ramesh, C. R. Murthy, and H. Tyagi “Sample-Measurement Tradeoff for
Support Recovery under a Subgaussian Prior”, ISIT 2019. 13



Analyzing the two steps

m Recovery of the union. Can recover the union with roughly
k2% log(d/m) samples'

m Recovering each support. The expected value of the clustering
matrix 7" has a block structure (under permutation of rows and
columns)

Ho w e Md
Sy

Iz Iz po p
Sy

E[T] =

L. Ramesh, C. R. Murthy, and H. Tyagi “Sample-Measurement Tradeoff for
Support Recovery under a Subgaussian Prior”, ISIT 2019.
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Properties of the eigenvectors

m Eigenvectors of the expected clustering matrix E [T has a
repeating rows structure

| ¢ leading eigenvectors

—_—

E [T] c Rk@xké Ve Rk@xe

m A nearest neighbor step can then partition the union estimate into
¢ subsets

14
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Extending to sample-based statistic

m Can show that the sample version of the clustering matrix 7'
suffices when we have roughly k*/*/m* samples

m Eigenvectors of T' and E [T are close when ||T"— E [T'] ||, is small
(Davis-Kahan theorem)

m Showing || 1" — E [T7]||op is small:
m T is a sum of rank-one matrices with heavy-tailed entries
m Standard methods difficult to adapt to this setting

m We use a result by Rudelson? to bound ||T"— E [T ||,p under relaxed
assumptions on moments

2M. Rudelson. Random vectors in the isotropic position, JFA 1999. 15
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Conclusion

m We developed a spectral algorithm that can recover multiple
supports from linear observations

m Works with fewer than & measurements per sample, requires
roughly k*¢*/m* samples

m Open questions: overlapping supports; imbalanced groups; lower
bounds

Thank you

For more details: “Multiple Support Recovery Using Very Few
Measurements Per Sample”, IEEE Transactions on Signal Processing,
May 2022 and ISIT 2021.
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