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Problem Formulation
▶ System model:

Γ : y = Ax+ n,

Φ : xi ∼ PX(x), ∀i.

where A ∈ CM×N , n ∼ CN (0, σ2IM ), and A,y, σ2, PX(·) are known.
▶ Assumptions:

(1) M,N → ∞ with fixed δ = M/N .
(2) A is right-unitarily-invariant.
(3) x is IID. For convenience, E{x} = 0 and 1

NE{∥x∥2} = 1.
▶ Goal: Given {y,A,Γ,Φ}, find an MMSE estimate of x:

MSE → mmse{x|y,A,Γ,Φ}

For non-Gaussian x, without the assumptions of M,N → ∞ and A, finding the
optimal solution is generally NP-hard.
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Approximate Message Passing (AMP)
▶ AMP-type algorithms:

linear estimator (LE) : rt = γt (xt) ,

non−linear esitmator (NLE) : xt+1 = ϕt (rt) .

▶ AMP:
LE : rt = xt +AH(y −Axt) + rOnsager

t ,

NLE : xt+1 = ϕ(rt) = E{x|rt},

where rOnsager
t = β⟨ϕ′(rt−1)⟩(rt−1 − xt−1).

Γ Φ
x

𝛾𝑡 𝜙𝑡

xt

rt

(a)

(b)

Non-memory

✓ Bayes optimal
✓ Low-complexity
× IID A is required

□ D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” in
Proc. Nat. Acad. Sci., 2009.
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Orthogonal/Vector AMP (OAMP/VAMP)
▶ OAMP/VAMP:

LE : rt = xt +
1
ϵγt
AH

(
ρtI +AAH

)−1
(y −Axt),

NLE : xt+1 =
1

ϵϕt+1

[
ϕ̂t(rt) + (1− ϵϕt+1)rt

]
,

where ϵγt and ϵϕt are orthogonal parameters.

✓ Bayes optimal (replica)
✓ Unitarily-invariant A
× High-complexity

□ J. Ma and L. Ping, “Orthogonal AMP,” IEEE Access, 2017.

□ S. Rangan, P. Schniter, and A. Fletcher, “Vector approximate message passing,” IEEE Trans. Inf. Theory,
2019.
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Convolutional AMP (CAMP)

▶ CAMP:

LE : rt = xt +AH(y −Axt) + rOnsager
t ,

NLE : xt+1 = ϕ(rt) = E{x|rt},

where rOnsager
t =

∑t−1
τ=0

[∏t−1
t′=τ ⟨ϕ′(rt′)⟩

]
(θt−τA

TA− gt−τ )(rτ − xτ ).

✓ Bayes optimal (replica), if converges
✓ Unitarily-invariant A
✓ Low-complexity
× Fails to converge for A with high condition numbers

□ K. Takeuchi, “Bayes-optimal convolutional AMP,” IEEE Trans. Inf. Theory, 2021.
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Memory AMP

▶ Memory AMP (MAMP):

LE : rt = γt(Xt) = Qty +
∑t

i=1Pt,ixi,

NLE : xt+1 = ϕt(Rt) ,

under orthogonality: ∀t ≥ 1,

1
N gH

t x
a.s.
= 0, 1

NFH
t gt

a.s.
= 0, 1

NGH
t ft+1

a.s.
= 0,

where Gt and Ft are error matrices.

▶ AMP, OAMP/VAMP, CAMP can be unified under
MAMP.
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□ L. Liu, S. Huang, and B. M. Kurkoski, “Memory AMP,” IEEE Trans. Inf. Theory, 2022.
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Bayes-Optimal MAMP (BO-MAMP) — Principle
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▶ The LE has memory and consists of a local estimator γ̂t and orthogonalization.
1. γ̂t approaches (ρtI +AAH)−1(y −Axt) in OAMP/VAMP.
2. The error of rt is orthogonal to x and the errors of x1, · · ·,xt.

▶ Damping ζ is added. ζ is analytically optimized to guarantee convergence. Also
improves convergence speed.

▶ NLE: Same as OAMP/VAMP and has no memory.
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MAMP with Gradient Descent
GD-MAMP:

LE : ut = θtBut−1 + ξt(y −Axt),

rt = γt(Xt) =
1
εγt

(
AHut +

∑t
i=1 pt,ixi

)
,

NLE : xt+1 =
[
x1 · · · xt ϕt(rt)

]
· ζt+1,

▶ ut is an estimate of (ρtI +AAH)−1(y −Axt).
▶ The parameters θt and ξt are optimized, pt,i and εγt are chosen to ensure

orthogonality. Computation not shown, but we’ll more talk about these later.
▶ ζt+1 is the optimized damping vector
▶ ϕt(·) is the same as that in OAMP/VAMP,

Gradient descent (GD) is used to approximate ξt
θt
(ρtI +AAH)−1(y −Axt) by ut.
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Why Memory? Intuition 1: Gradient Descent Avoids Matrix Inverse
Want to eliminate matrix inverse in OAMP: ξt

θt
(ρtI +AAT)−1(y −Axt).

Solve Wu = b without finding W−1.

Intuition 1 Solving u = W−1b is equivalent to

argmin f(u) = 1
2u

TWu− bTu

when W is positive definite. Find solution using gradient descent with step:

ui = ui−1 − α∇f(ui−1)

= ui−1 + α(b−Wui−1).

Then ui approaches the correct value u.
Choosing α = 2

λmax+λmin
is close to optimal. Shown for real-valued case.
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ChatGPT: Is it possible to find a matrix inverse using gradient descent?
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Why Memory? Intuition 2: Neumann Series for Matrix Inverse
Let ρ(C) denote the spectral radius of C. If ρ(C) < 1, then

(I −C)−1 =
∑∞

i=0C
i.

Choose C = I −W . When ρ(C) ≥ 1, let C ′ = I − θ(I −C), where θ ensures
ρ(C ′) < 1. With u0 = 0:

ui = C ′ui−1 + θb.

Then ui approaches u = W−1b. This iteration is identical to gradient descent.
To accelerate convergence, we can minimize ρ(C ′) by:

θ = 2
λ1+λ2

,

where λ1 and λ2 denote the maximum and minimum eigenvalues of I −C.
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Overview of AMP-Type Algorithms
Table 1: Overview of AMP-Type Algorithms

Algorithm Matrix A Convergence Time complexity Optimality
AMP IID Converges Low: O(MN) Bayes-optimal

OAMP/VAMP Right unitarily
invariant Converges High: O(M2N) Bayes-optimal

CAMP Right unitarily
invariant

Diverges in high
condition numbers Low: O(MN) Bayes-optimal

GD-MAMP Right unitarily
invariant Converges Low: O(MN) Bayes-optimal

□ D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” in
Proc. Nat. Acad. Sci., 2009.

□ J. Ma and L. Ping, “Orthogonal AMP,” IEEE Access, 2017.
□ S. Rangan, P. Schniter, and A. Fletcher, “Vector approximate message passing,” IEEE Trans. Inf. Theory,

2019.
□ K. Takeuchi, “Bayes-optimal convolutional AMP,” IEEE Trans. Inf. Theory, 2021.

□ L. Liu, S. Huang, and B. M. Kurkoski, “Memory AMP,” IEEE Trans. Inf. Theory, 2022.
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Comparison of AMP-Type Algorithms
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Figure 1: M = 213, N = 214, κ(A) = 10,SNR = 30dB

▶ AMP:
low complexity
poor MSE

▶ OAMP/VAMP:
fastest convergence
high complexity

▶ CAMP:
low complexity
slow convergence
incorrect state evolution

▶ GD-MAMP:
low complexity
fast convergence
correct state evolution
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Overflow Problem in GD-MAMP

▶ Representation of floating point numbers from the IEEE 754 technical standard:
▶ binary32 (single precision): ±1.18× 10−38 ∼ ±3.4× 1038

▶ binary64 (double precision): ±2.23× 10−308 ∼ ±1.8× 10308

Double-precision is widely used, including in Matlab and Python
▶ The dreaded NaN will appear for values that are too large.
▶ Overflow problem: In GD-MAMP, some intermediate variables may increase

exponentially, and exceed the maximum value of double precision.
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Which intermediate variables cause overflow in GD-MAMP?

▶ In iteration t, the parameters (1) ξt (2) pt,i and (3) vγt,t (variance of rt) require wt.
▶ λ† = (λmax + λmin)/2 and B = λ†I −AAH, where λmax, λmin denotes the

maximum and minimum eigenvalues of AAH.

bk ≡ 1
N tr{Bk},

wk ≡ 1
N tr{AHBkA} = λ†bk − bk+1.

▶ bk can be computed if the eigenvalues of AAH are known. Otherwise, there are
simple methods to approximate λmax, λmin and bk.

▶ If λmax > λmin + 2, the spectral radius ρ(B) > 1, b2k increases exponentially.
▶ Even wk may increase exponentially.
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Overflow of wk
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Figure 2: log10 |wk| versus k

▶ w1, · · · , w2T are required, where T is the maximum number of iterations.
▶ As shown in Figure 2, |wk| increases exponentially as k increases.
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Overflow Problem in GD-MAMP
▶ To compute ξt, pt,i and vγt,t, we need wk:

bk ≡ 1
N tr{Bk},

wk ≡ 1
N tr{AHBkA} = λ†bk − bk+1.

▶ While wk increases exponentially, it always appears in the product ϑwk, which is
bounded (i.e. ϑ is small).

▶ For any ϑ ∈ R\{0}, the following holds:

ϑwk =
sgn(ϑ)

N
1T

[
(λ†1− λB) ◦ s◦kλ ◦ e◦ log |ϑ|1+kλlog

B
]
,

where λB denotes the eigenvalues of B, sλ ≡ sgn(λB), λlog
B ≡ log◦ |λB| and ◦ is

component-wise operation.
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Overflow-Avoiding GD-MAMP with Eigenvalues of AAH

▶ ϑwk requires O(M) computations, GD-MAMP requires to compute O(T 3) terms
involving wk, where T is the number of iterations. The overall complexity is
O(MT 3). How to reduce the complexity?

▶ Define

χk ≡ θk0wk,

where θ0 = (λ† + σ2)−1 > 0. We pre-compute χ1, · · ·, χ2T−1 before the iterations.
Computing ϑwk can be reduced to a scalar operation:

ϑwk = sgn(ϑ)elog |α|−k log ϑχk.

▶ Pre-computing χ1, · · ·, χ2T−1 costs O(MT ), and computing terms involving wk in
iterations costs O(T 3). The overall complexity is reduced to O(MT + T 3).
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Overflow-Avoiding GD-MAMP with Eigenvalues of AAH

Theorem (2)
For any k ≥ 0,

|χk| ≤ δ(λ† + θ−1
0 ),

where δ = M/N .

▶ Theorem 2 shows that χk is bounded. In other words, computing χk has no risks
of overflow.
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Overflow-Avoiding GD-MAMP without Eigenvalues of AAH

In large-scale systems, computation of eigenvalues of AAH may be impractical.

▶ A method to estimate the maximum and minimum eigenvalue λmax and λmin was
given in [LHK22].

▶ For k ≥ 0, χk can be estimated by

χk = h̄H
i h̄k−i

where i = ⌈k/2⌉ and h̄i is given by a recursion

h̄i = θ0(λ
†I −AAH)h̄i−1

with h̄0 = Ah0, h0 ∼ N (0, 1
N IN ).
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Simulation Results
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Figure 3: M = 213, N = 214, κ(A) = 1000,SNR = 35dB

▶ When t > 136, the unmodified GD-MAMP does not reach the fixed point since
b137 and w137 overflows.

▶ Both OA-GD-MAMP with and without eigenvalues of AAH work properly. 23 / 29
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Complexity Analysis of GD-MAMP
Let T be the number of iterations. The main complexity of GD-MAMP is O(MNT ),
dominated by the number of matrix-vector products, each with O(MN)

LE : ut = θtBut−1 + ξt(y −Axt),

rt =
1
εγt

(
AHut +

∑t
i=1 pt,ixi

)
,

NLE : xt+1 =
[
x1 · · · xt ϕt(rt)

]
· ζt+1.

GD-MAMP requires 4 matrix-vector products per iteration?
▶ Computing Aϕt−1(rt−1) to estimate vϕt,1, · · ·, v

ϕ
t,t requires one (hidden in ζt).

▶ Computing But−1 = (λ†I −AAH)ut−1 requires two.
▶ Computing AHut requires one.

Easily eliminate one matrix-vector product:
▶ Two of the products are AHut, these only need to be computed once.

GD-MAMP requires 3 matrix-vector products per iteration!
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Complexity-Reduced GD-MAMP Using Approximate ξt
Finding the damping vector ζt nominally requires one matrix-vector product:

1. Compute zt = y −Aϕt−1(rt−1).
2. Estimate vϕt,1, · · ·, v

ϕ
t,t by using zt, where vϕt,i denotes the covariance of ϕt−1(rt−1)

and xi for i < t.
3. Compute ζt from the covariance matrix V ϕ

t of x1, · · · ,xt−1 and ϕt−1(rt−1).

To remove the above matrix-vector product:
(1) We move the damping from the NLE to the LE (details omitted).
(2) ξt nominally depends on zt and V ϕ

t . But we found that approximating ξt gave
little to no performance loss:

ξ̃t = 1/(vϕt,t + σ2).

where vϕt,t is the variance of xt, given as that in OAMP/VAMP.
▶ The resulting complexity-reduced GD-MAMP requires only 2 matrix-vector

products per iteration. 26 / 29



Simulation Results
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Figure 4: MSE versus number of iterations, M = 213, N = 214,SNR = 35dB

▶ CR-GD-MAMP requires a few more iterations to converge.
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Simulation Results
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Figure 5: MSE versus number of matrix-vector products, M = 213, N = 214,SNR = 35dB

▶ CR-GD-MAMP achieves the same MSE as GD-MAMP while requiring about 2/3
matrix-vector products.
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Conclusion
GD-MAMP is a memory AMP algorithm that:

▶ Converges for unitarily-invariant matrices
▶ is low complexity, avoiding matrix inverse
▶ converges for A of high condition number

overcoming the weakness of AMP, OAMP/VAMP and CAMP.
(1) To solve the overflow problem, we propose OA-GD-MAMP:

▶ With known eigenvalues of AAH, OA-GD-MAMP is equivalent to GD-MAMP.
▶ Otherwise, OA-GD-MAMP can achieve nearly the same performance.

(2) GD-MAMP requires three matrix-vector products per iteration. To reduce it:

▶ We propose CR-GD-MAMP as a variant of GD-MAMP. It requires only two
matrix-vector products per iteration with almost the same convergence speed.
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