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Monitoring in IoT Systems
How to maintain an accurate knowledge from remote sensors

...
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status update
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Monitoring in IoT Systems
The challenge of maintaining an accurate knowledge from remote sensors

◦ monitor state of remotely-deployed sensor nodes
• smart agriculture
• environmental monitoring
• asset tracking, . . .

◦ possibly massive number of battery-powered, low-complexity devices
• transmit only terminals
• constraints on protocols complexity

◦ sporadic traffic, following non-regular patterns
• high cost for coordination and resource assignment (grant-based)
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Monitoring in IoT Systems
The challenge of maintaining an accurate knowledge from remote sensors

◦ random access procedures commonly used for medium sharing
• advanced schemes (modern random access)1

• ALOHA-like access employed in most practical systems, e.g. LoRaWAN, Sigfox

◦ non-trivial challenges hinder performance
• packet losses due to collisions, absence of feedback

◦ goal is to maintain accurate knowledge of the monitored sources at the receiver
• first step is definition of metrics that can capture this capability
• pioneering role played by age of information (AoI)2

1. Y. Polyanskiy, "A Perspective on Massive Random Access," in Proc. IEEE ISIT, 2017.

2. S. Kaul, M. Gruteser, V. Rai, and J. Kenney, "Minimizing age of information in vehicular networks," in Proc. IEEE SECON, June 2011.
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Age of Information
A measure of freshness of available information

src receiver

t-stamp data

current age of information

δ(t) = t − σ(t)
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New metrics to capture data significance
Complementing age of information

◦ AoI focuses on timeliness of delivered information
• in some applications, knowledge at the receiver may be critical (e.g., actuation)

◦ other metrics proposed to try to capture this aspect
• age of incorrect information3

t

3. A. Maatouk, S. Kriouile, M. Assaad, A. Ephremides, "The age of incorrect information: A new performance metric for status updates," IEEE/ACM Trans. Netw., 2020.
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New metrics to capture data significance
Complementing age of information

◦ AoI focuses on timeliness of delivered information
• in some applications, knowledge at the receiver may be critical (e.g., actuation)

◦ other metrics proposed to try to capture this aspect
• age of incorrect information3

• query age of information4

◦ AoI matters at time instants where receiver needs to use information, e.g. actuation

• information theory inspired metrics

3. A. Maatouk, S. Kriouile, M. Assaad, A. Ephremides, "The age of incorrect information: A new performance metric for status updates," IEEE/ACM Trans. Netw., 2020.

4. F. Chiariotti, J. Holm, A. Kalor, B. Soret, S. Jensen, T. Pedersen, P. Popovski, "Query AoI: Freshness in pull-based communication," IEEE Trans. Commun., 2022.
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New metrics to capture data significance
Complementing age of information

◦ mutual information5

• I(Xt; W t) = H(Xt) − H(Xt | W t)
• if close to 0, received samples W t carry little information and deemed obsolete

◦ entropy on tracked process conditioned on received samples6,7

• H(Xt | W t)
• measure of uncertainty at the receiver on the current status of the source

5. Y. Sun and B. Cyr, "Information aging through queues: A mutual information perspective," in Proc. IEEE SPAWC Workshop, 2018.

6. M. Rezaeian, B. Vo, J. S. Evans, "The optimal observability of partially observable Markov decision processes: Discrete state space," IEEE Trans. Autom. Control, 2010

7. G. Chen, S. C. Liew, Y. Shao, "Uncertainty-of-information scheduling: A restless multiarmed bandit framework," IEEE Trans. Inf. Theory, 2022.
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Remote monitoring in random access channels
Current status and open questions

◦ performance well-known in terms of traditional metrics (e.g., throughput, delay)

◦ recent results characterized behavior in terms of AoI
• ALOHA-based systems8,9,10,11

• modern random access schemes12,13

◦ first studies for age of incorrect information14,15

◦ behavior in terms of other metrics largely unexplored

8. S. Kaul, R. Yates, "Status updates over unreliable multiaccess channels," in Proc. IEEE ISIT, 2017

9. R. Yates, S. Kaul, "Age of information in uncoordinated unslotted updating," in Proc. IEEE ISIT, 2020

10. X. Chen, K. Gatsis, H. Hassani, S. Bidokhti, "Age of information in random access channels," in IEEE Trans. Inf. Theory, 2022

11. O. Yavascan and E. Uysal, "Analysis of slotted ALOHA with an age threshold," IEEE J. Sel. Areas Commun., 2021.

12. A. Munari, "Modern random access: an age of information perspective on irregular repetition slotted ALOHA," IEEE Trans. Commun., 2021.

13. A. Munari, F. Lazaro, G. Durisi, G. Liva, "The dynamic behavior of frameless ALOHA: Drift analysis, throughput and age of information," IEEE Trans. Commun., 2023.

14. A. Nayak, A. Kalor, F. Chiariotti, P. Popovski, "A decentralized policy for minimization of age of incorrect information in slotted ALOHA systems," in Proc. IEEE ICC., 2023

15. A. Munari, "Monitoring IoT sources over random access channels: age of incorrect information and missed detection probability," in Proc. IEEE ICC, 2024.
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Ideas and Contribution
State Estimation Entropy in Random Access Channels

◦ consider set of two-state Markov sources

◦ study behavior in terms of age of information and state estimation entropy

• random sampling and transmission strategy
• reactive sampling and transmission strategy

◦ analytical results via hidden Markov models and density evolution

◦ insights on impact of role played by these metrics in terms of protocol operations
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System Model
Source model and channel access

◦ M independent sources, modeled as two-state Markov processes of alphabet {0, 1}

0 1

q00

q01

q10
q11

π0 =
q10

q10 + q01
, π1 =

q01

q10 + q01

◦ common channel to a receiver (slotted time)
• at each slot, nodes decide whether to send packet containing current source value

◦ slotted ALOHA access, collision channel model
• destructive collisions, singleton slots always decoded
• no feedback nor retransmissions
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System Model
Source model and channel access

◦ focus on reference source, whose evolution is described by random process

X0 X1 X2 . . . Xn ∈ {0, 1}

◦ receiver able to detect idle and collision slots, observes sequence

Y0 Y1 Y2 . . . Yn ∈ {0, 1, I, C, ⊖, ⊕}

• I: idle slot, C: slot with collision
• ⊖, ⊕: observation of state (0 or 1) from another source

◦ denote sequence of observations up to time n as Y n = [Y0, Y1, . . . , Yn]
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System Model
Transmission strategies

◦ random transmission strategy
• at each slot, a node transmits update with probability α

◦ reactive transmission strategy
• a node transmits update only if source has changed state

◦ reactive approach triggers key trade-offs

• reduced traffic, avoiding transmission of duplicate information
• in case of collision, receiver may remain with erroneous knowledge for long time
• observation Yn ∈ {I, C, ⊖, ⊕} carries information on the source of interest

◦ Xn−1 = 0, state known at receiver
◦ Yn = ⊖ → Xn = 0: a state change would have induced a collision
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System Model
State Estimation Entropy

◦ for a given sequence of observations Y n = yn, uncertainty at the receiver on
current state of the source measured by the entropy

h(yn) = H (Xn | Y n = yn)

h(yn)

H(X)

n

single node, random transmission policy; q10 = 0.2, q01 = 0.01, i.e., π0 ≃ 0.95, π1 ≃ 0.05
H(X) = −π0 log2 π0 − π1 log2 π1
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System Model
State Estimation Entropy

◦ for a given sequence of observations Y n = yn, uncertainty at the receiver on
current state of the source measured by the entropy

h(yn) = H (Xn | Y n = yn)

◦ we consider the expected value of the r.v. Hn = h(Y n)

E[Hn] = H (Xn | Y n)

◦ in particular, we are interested in the limiting behavior as n grows large, giving the
average state estimation entropy

H∞ = lim
N→∞

1
N

N−1∑
n=0

H(Xn | Y n)
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Hidden Markov Models
Track statistical relation between Xn and Y n

◦ SEE calculation requires tracking evolution of Xn from channel observations Y n

◦ statistical relation captured via hidden Markov models

• hidden (non observable) Markov process, Xn

• observable process Yn, driven by Xn, or by the transition (Xn−1, Xn)

• source transition probabilities p(xn | xn−1), observation probabilities p(yn | xn) known

• joint distribution of observations and current state can be found recursively

P (xn, yn) =
∑

xn−1

P (xn | xn−1) P (yn | xn) P (xn−1, yn−1)
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Hidden Markov Models
Random transmission strategy

◦ channel access independent of source evolution

• observation does not depend on source transitions, only on current state
• observation of I, ⊖, ⊕, C does not provide information on the state of the source

0 1

P (Yn | 0) P (Yn | 1)

◦ observation probabilities can easily be computed
• P[Yn = I | Xn = xn] = (1 − α)M

• P[Yn = ⊖ | Xn = xn] = (M − 1)π0 α (1 − α)M−1

• P[Yn = 0 | Xn = 0] = α(1 − α)M−1, P[Yn = 0 | Xn = 1] = 0
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Hidden Markov Models
Reactive Transmission Strategy

◦ for reactive strategy, observation depends on transition of the reference source, as
well as on number of terminals in a given state
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Hidden Markov Models
Reactive Transmission Strategy

◦ for reactive strategy, observation depends on transition of the reference source, as
well as on number of terminals in a given state

◦ hidden Markov model with state σn = (Xn, Sn)

P (Yn|(0, 1), (0, 0))

0, 0 1, 0

0, 1 1, 1

0,M−1 1,M−1

P (Yn|(0, 0), (0, 0)) P (Yn|(1, 0), (0, 0))

P (Yn|(1, 1), (0, 0))

P (Yn|(0,M−1), (0, 0))

P (Yn|(1,M−1), (0, 0))

...
...

◦ Sn: number of sources (other than
reference one) in state 0 at time n

◦ channel output depends on state
through conditional probability
function P (Yn | σn−1, σn)
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A Posteriori Probability (APP) Logarithmic Ratio
A sufficient statistics for Xn | Y n

◦ consider a posteriori probability (APP) logarithmic ratio

λn := ln P[Xn = 0 | Y n = yn]
P[Xn = 1 | Y n = yn]

◦ Lemma: The APP logarithmic ratio λn is a sufficient statistics for Xn given Y n

• Xn → Λn → Y n, i.e. P (xn | λn, yn) = P (xn | λn)

• proof sketch: Fisher-Neyman factorization th., writing P (yn | xn)=a(xn, λn)b(yn),
with a(·), b(·) non-negative functions

ln P[Xn = 0 | Y n = yn]
P[Xn = 1 | Y n = yn] = ln P[Xn = 0 | Λn = λn]

P[Xn = 1 | Λn = λn]
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A Posteriori Probability (APP) Logarithmic Ratio
A sufficient statistics for Xn | Y n

◦ recalling that P[Xn = 0 | Λn = λn] + P[Xn = 1 | Λn = λn] = 1, we get

P[Xn = xn | Λn = λn] = e−xnλn

1 + e−λn

◦ by the data-processing inequality

h(yn) = H(Xn | Y n = yn) = H(Xn | Λn = λn)

=
∑

xn∈{0,1}

e−xnλn

1 + e−λn
log2

e−xnλn

1 + e−λn
:= h(λn)

◦ λn suffices to compute uncertainty at receiver at time n

• recursive calculation of λn as function of λn−1 and observation yn
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Recursive calculation of λn
Random transmission policy

◦ from forward recursion on HMM we have

P (xn, yn) =
∑

xn−1∈{0,1}

P (yn | xn)P (xn | xn−1)P (xn−1, yn−1)

◦ leaning on this, we obtain

λn = ln P[Xn = 0, Y n = yn]
P[Xn = 1, Y n = yn] = ln P (yn | 0)

P (yn | 1) + ln q00 + q10e−λn−1

q01 + q11e−λn−1
:= f(yn, λn−1)

◦ all quantities are known
• q00, q01, q10, q11 are source transition probabilities
• observation probabilities P (yn | xn) derived earlier
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Recursive calculation of λn
Reactive transmission policy

◦ consider now reactive transmission strategy

◦ following the same approach, we obtain

P (σn, yn) =
∑
σn−1

P (yn | σn−1, σn)P (σn | σn−1)P (σn−1, yn−1)

λn = ln

∑
σn∈{0}×S

P (σn, yn)∑
σn∈{1}×S

P (σn, yn)

◦ P (yn | σn−1, σn), P (σn−1, σn) obtained from statistics of Xn and access strategy

◦ however, complexity of calculation grows with M2: impractical for larger networks
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Recursive calculation of λn, reactive case
Myopic surrogate model

◦ to simplify calculation of λn, introduce myopic surrogate model

• reference source operates following reactive strategy
• all other sources follow random transmission strategy, with activation probability

α̃ = π0 q01 + π1 q10

◦ under this hypothesis, observation no longer depends on Sn

0 1

P (Yn | 0, 0)

P (Yn | 0, 1)

P (Yn | 1, 0)
P (Yn | 1, 1)
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Recursive calculation of λn, reactive case
Myopic surrogate model

◦ for the myopic HMM, the recursion simplifies to

P (xn, yn) =
∑

xn−1∈{0,1}

P (yn | xn−1, xn)P (xn | xn−1)P (xn−1, yn−1)

λn = ln
∑

xn−1
P[Yn = yn | Xn−1 = xn−1, Xn = 0] · qxn−1,0 exp(−xn−1λn−1)∑

xn−1
P[Yn = yn | Xn−1 = xn−1, Xn = 1] · qxn−1,1 exp(−xn−1λn−1)

:= g(yn, λn−1)

◦ complexity independent of the number of sources

◦ HMM gives in general an approximation, yet exact for symmetric sources (q10 = q01)
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State Estimation Entropy Derivation
Statistics of the APP logarithmic ratio

◦ to compute state estimation entropy, we are interested in

E[Hn] = H(Xn | Y n) = H(Xn | Λn) = E[h(Λn)]

◦ analytical derivation of SEE available via probability distribution of r.v. Λn

◦ quantized density evolution, i.e. quantize values taken by λn

H(Xn | Y n) =
∑
λn

P (λn) h(λn)

h(λn) =
∑

xn∈{0,1}

e−xnλn

1 + e−λn
log2

e−xnλn

1 + e−λn
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Quantized Density Evolution
Recursive calculation of P (λn, xn)

◦ distribution of Λn computed recursively, given distribution of Λn−1 and
conditional distribution of Yn | Xn

◦ for the random transmission strategy

P (λn, xn) =
∑

xn−1∈{0,1}

∑
yn,λn−1:

f(yn,λn−1)=λn

P (λn−1, yn, xn, xn−1)

=
∑

yn,λn−1:
f(yn,λn−1)=λn

P (yn|xn)
∑

xn−1∈{0,1}
P (xn|xn−1)P (λn−1, xn−1)

◦ similar approach for reactive case, relying on myopic surrogate model
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◦ distribution of Λn computed recursively, given distribution of Λn−1 and
conditional distribution of Yn | Xn

◦ for the random transmission strategy

P (λn, xn) =
∑

xn−1∈{0,1}

∑
yn,λn−1:

f(yn,λn−1)=λn

P (λn−1, yn, xn, xn−1)

=
∑
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f(yn,λn−1)=λn

P (yn|xn)
∑
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P (xn|xn−1)P (λn−1, xn−1)

◦ similar approach for reactive case, relying on myopic surrogate model
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Average AoI Performance
Random and reactive strategies

◦ for slotted ALOHA access, assuming i.i.d. behavior across slots, average AoI
inversely proportional to throughput T

∆ = 1
2 + M

T

◦ minimal AoI attained for transmission probability 1/M

◦ random transmission strategy shall be operated accordingly, setting α = 1/M

◦ reactive transmission strategy: transmission probability driven by source statistics

α̃ = π0q01 + π1q10
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Average AoI Performance
Symmetric sources
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Average State Estimation Entropy
Symmetric sources, random and reactive transmission policies
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Average State Estimation Entropy
Symmetric sources, random and reactive transmission policies
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Average State Estimation Entropy
Symmetric sources, random and reactive transmission policies

◦ SEE increases in larger networks
• more congestion, higher loss probability
• H∞ tends to source entropy as M grows

◦ lower SEE when sources transition less often (q10 = q01 = 0.01)
• fewer updates needed to track evolution
• lower channel congestion (reactive strategy)

◦ reactive strategy offers better performance
• only relevant updates are sent
• for M = 2, perfect knowledge at the receiver is achieved
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Average State Estimation Entropy
Asymmetric sources, q10 = 0.1, q01 = 0.01
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Concluding Remarks

◦ remote source monitoring in IoT systems
• two-state Markov sources
• slotted ALOHA-based channel access, random and reactive strategies

◦ analytical characterization of state estimation entropy
• capture uncertainty at receiver

◦ different protocol operation insights when considering AoI and SEE
• when freshness is of relevance, transmission strategy maximizing throughput is optimal
• when uncertainty on source state is important, reactive strategy is convenient
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Concluding Remarks

◦ metric choice based on targeted application
• freshness relevant e.g., in tracking, monitoring (AoI valuable proxy for complex systems)
• uncertainty on source state relevant for, e.g., actuation

◦ results also for error probability, false alarm and missed detection probability16

◦ open research topic
• identify more advanced, optimal policies
• tracking of more practical, possibly correlated, source processes

16. A. Munari, G. Cocco, G. Liva, "Remote Monitoring of Markov Sources over Random Access Channels: False Alarm and Detection Probability," in Proc. IEEE Asilomar 2023.
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Additional Insights



State Estimation at the Receiver
Estimation Error Probability

◦ receiver aims at estimating the state of the reference source
• denote by X̂n the estimate at time n of the state Xn

◦ evaluate performance in terms of state estimation error probability

P (n)
e = P

[
X̂n ̸= Xn

]
◦ in particular, interested in average error probability

Pe = lim
N→∞

1
N

N−1∑
n=0

P (n)
e
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State Estimation at the Receiver
MAP and Decode&Hold

◦ Pe minimized via maximum a posteriori (MAP) estimator
• APP logarithmic ratio combined with threshold test
• x̂n = 0 if λn > 0, x̂n = 1 if λn < 0

◦ average error probability of MAP estimator follows from density evolution analysis

Pe = lim
n→∞

∑
λn≤0

P (λn, 0) + lim
n→∞

∑
λn≥0

P (λn, 1)

◦ MAP estimator entails computational complexity that may be critical, e.g.
battery-powered or computationally-limited receivers
• introduce simpler decode and hold (D&H) estimator
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Decode and Hold Estimator
Definition and Trade-Offs

◦ decode and hold: update estimate only upon receiving update from source,
otherwise keep last received value

X̂n =
{

Yn if Yn ∈ {0, 1}
X̂n−1 if Yn ∈ {I, C, ⊖, ⊕} .

◦ simpler implementation, yet suboptimal performance
• consider two-source network, reactive strategy
• D&H in error as soon as a collision occurs
• MAP estimator experiences no error: perfect knowledge out of collisions and idle slots
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Decode and Hold Estimator
Markov Model, random transmission strategy

◦ error probability obtained by tracking Markov process (Xn, X̂n)

◦ for random strategy, defining ω = α(1 − α)M−1

0, 0 0, 1

1, 0 1, 1

q00

q01(1−ω)

q01ω

q00ω q00(1− ω)

q01

q10

q11(1− ω)
q11ω

q10ω

q11

q10(1−ω)
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Decode and Hold Estimator
Markov Model, random transmission strategy

◦ error probability obtained by tracking Markov process (Xn, X̂n)

◦ for random strategy, defining ω = α(1 − α)M−1

◦ aperiodic, irreducible and thus ergodic chain
• error probability can be derived from stationary distribution πi,j , (i, j) ∈ {0, 1} × {0, 1}

Pe = π0,1 + π1,0

◦ computing the stationary distribution, we get

Pe = 2q01q10 (1 − ω)
(q01 + q10) [ ω + (1 − ω)(q01 + q10)]
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Decode and Hold Estimator
Markov Model, reactive transmission strategy

◦ similar approach holds for reactive strategy (myopic approximation)
• average activation probability α̃ = π0 q01 + π1 q10
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Pe ≈ 1 − (1 − α̃)M−1

2 − (1 − α̃)M−1
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State Estimation Error Probability
MAP and D&H, symmetric sources (q10 = q01 = 0.01)
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State Estimation Error Probability
MAP and D&H, asymmetric sources (q10 = 0.01, q01 = 0.1)
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State Estimation Error Probability
MAP and D&H

◦ for symmetric sources, D&H matches MAP performance
• difference only for low M

• when more sources present, collisions become less informative
• reactive strategy leads to better estimate

◦ for asymmetric sources, D&H performs significantly worse
• D&H may need long time to recover from an error
• reactive strategy performs worse than random one

◦ random transmissions can lead to quicker recovery from erroneous estimate
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