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Can we do better?

What are the limits and trade-offs?
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Acknowledgments: Massive ARQ Protocols for Wireless
Access," in IEEE Transactions on Communications, vol. 70, no.
8, pp. 5258-5270, Aug. 2022.
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Part 1
Information Theoretic Bounds
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Formal Problem Definition

- [N] ={1,2, ..., N}: set of potentially active users (e.g., N = 232)
e S =1{51,55,....,5}~U (([’I\{'])): set of K recovered users
« K & N, assumed to be constant (e.g., K = 100)

ACK encoder User n’'s ACK decoder

g.:{0,1}8 > {ACK, NACK}

ACK message length
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Error Types

False positives (false alarms)

N
1
Ep = NZ: P(gn(f(S)) = ACK|n ¢ §)

False negatives (missed detections)

N
1
Efn = NZ: P(g.(f(S)) = NACK|n € )
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Error-free Encoding

Efp = &fn = 0

There are (’I}’) ways to pick the K recovered users, so we need

) N .
o [logz (Kﬂ |bits]

> [K log, (%ﬂ |bits]
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Error-free Encoding

Note that Bl ror—free = [l0g2(})] < [K log, (%ﬂ bits
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Encoding with Errors

Each ACK message W can be used for
several sets of recovered users §

R. Pagh and F. F. Rodler, “Lossy dictionaries,” in Eur. Symp. Algorithms. Springer, 2001, pp. 300-311
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Encoding with Errors

Does not depend on N as N — oo for fixed K

§ 1 e
Bty i = K log; — K log, (1 - ) — &K logo —log, K
Efp T fn Efn Sfp +%)

K =100

False positives give the highest gains 10° 30
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bits per user
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Efp > 0, & = 0
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For large N: o
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L. Carter, et al., “Exact and approximate membership testers,” in Proc. Tenth annu. ACM Symp. Theory Comp. (STOC). ACM Press, 1978.
M. Dietzfelbinger and R. Pagh, “Succinct data structures for retrieval and approximate membership,” in Int. Collog. Automata, Languages,
and Program. Springer, 2008, pp. 385-396.
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Part 2
Practical Schemes
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Bloom Filter

Encoding:

S = {Sl' 153}
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Bloom Filter

Encoding:

S = {Sl' 153}

hy(s1)
hy(s3)
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Bloom Filter

Encoding:
S = {Sl' 153}
N
hy(s1)
hy(s1)
h,(s2) hy(s3)
X |o|1]0o|l0o|O0|1]0|lO|O|O]|O|O|1|O0]|O]|O|1]oO
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Bloom Filter

Encoding:
S = {Sl' 153}
N
hy(s1) By (s))
h( ) 1\~1
h,(s5) 15 hy(s1) h,(s3)
X |o|l1]|o0o|lo|Oo|1|0]O|1]|O|lO|O|1|O0]|O|O]|1]0O

BIRS, March 2024

13



Bloom Filter

Encoding:
S = {Sl' 153}
N
hi(s1) By (s))
h 1\°1
h,(s5) 1(53) hy(s1) h,(s3)
X01000100100010001O
Decoding:
hq (k) ho (Si)
5o XmGw & Xp,(s) = 1 = ACK

xh1(5k) &xhz(Sk) = () = NACK
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Bloom Filter Analysis

After optimizing the number of hash functions and the message length it can
be shown that

1
By = K log; (_)

&E fp

A factor log,(e) = 1.44 larger than the asymptotic bound

A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,” Internet Math., vol. 1, no. 4, p.
485-509, Jan 2004.
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Linear Equations

Consider the set of K linear equations constructed using hashes of the user ids

S = S1, ,53}

WMy Py mP ()]

[Z] _ n2(s1) All hash functions are
Z3

hP(ss) B (sy) P (sy).
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_hz (53)_ V] = GF(27)

unknown vector

M. Dietzfelbinger and R. Pagh, “Succinct data structures for retrieval and approximate membership,” in Int. Colloq.

Automata, Languages, and Program. Springer, 2008, pp. 385-396.
E. Porat, “An optimal bloom filter replacement based on matrix solving,” in Int. Comput. Sci. Symp. Russia.

Springer, 2009, pp. 263-273. 15



Linear Equations

M) Ry A ()

[Z] _ n2(s1) All hash functions are
Z3

WM (ss) RSP (s3) R (sy)l
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ha(s3)] IN] = GR(ZF)

M. Dietzfelbinger and R. Pagh, “Succinct data structures for retrieval and approximate membership,” in Int. Colloq.

Automata, Languages, and Program. Springer, 2008, pp. 385-396.
E. Porat, “An optimal bloom filter replacement based on matrix solving,” in Int. Comput. Sci. Symp. Russia.
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Linear Equations

Decoding:
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M) Ry A ()

WM (ss) RSP (s3) R (sy)l

[Z] _ n2(s1) All hash functions are
- p
22l [hy(ss) INT = GR(2")

Y (s)z1 + B2 (s1)2, + B (s1) 23 = hy(s) = ACK

M. Dietzfelbinger and R. Pagh, “Succinct data structures for retrieval and approximate membership,” in Int. Colloq.

Automata, Languages, and Program. Springer, 2008, pp. 385-396.
E. Porat, “An optimal bloom filter replacement based on matrix solving,” in Int. Comput. Sci. Symp. Russia.
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Linear Equations

All hash functions are

hV () hPs0) P 6D| iz Tha(sy)
[Z] = [N] - GF(2P)

h
_hgl)(sg) hgz)(s_g) h§3)(53)_ ha(s3).

Decoding:
Y (s)z1 + B2 (s1)2, + B (s1) 23 = hy(s) = ACK

All we need to send is [z1  Zzz z3]T
(assuming the solution exists)

M. Dietzfelbinger and R. Pagh, “Succinct data structures for retrieval and approximate membership,” in Int. Colloq.

Automata, Languages, and Program. Springer, 2008, pp. 385-396.
E. Porat, “An optimal bloom filter replacement based on matrix solving,” in Int. Comput. Sci. Symp. Russia.
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Linear Equations

r (1) (2) (3) - ] _
hy7(s1) hy7(s1) hy (s1) ]z hy(s1) |
[Zz] _ All hash functions are
Z3

ha(s3)] IN] = GF(Z)

WM (ss) RSP (s3) R (sy)l

Decoding:
Y (s)z1 + B2 (s1)2, + B (s1) 23 = hy(s) = ACK

All we need to send is [z1  Zzz z3]T
(assuming the solution exists)

M. Dietzfelbinger and R. Pagh, “Succinct data structures for retrieval and approximate membership,” in Int. Colloq.
Automata, Languages, and Program. Springer, 2008, pp. 385-396.
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Linear Equations

All hash functions are

hV () hPs0) P 6D| iz Tha(sy)
[Z] = [N] - GF(2P)

h
_hgl)(sg) hgz)(s3) h§3)(53)_ ha(s3).

Decoding:
Y (s)z1 + B2 (s1)2, + B (s1) 23 = hy(s) = ACK

All we need to send is [z1  Zzz z3]T
(assuming the solution exists)

Recall the bound:

1
—) + O(loglogN)

M. Dietzfelbinger and R. Pagh, “Succinct data structures for retrieval and approximate membership,” in Int. Colloq.

Automata, Languages, and Program. Springer, 2008, pp. 385-396.
E. Porat, “An optimal bloom filter replacement based on matrix solving,” in Int. Comput. Sci. Symp. Russia.
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Comparison

— LB, Eq. (11) --- UB, Eq. (13)
32 ——  Concat., K'logo(N) ——  Error-free, Eq. (7)
N =2 -~~~ Buune, Eq. 20) By, Eq. (23)
- Bie, Eq. (24)
erp = 0.0001
| |

B (bits)

|
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Part 3
Applications in ARQ protocols
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Downlink Erasure Channel

ACK encoder User n’s channel User n’s decoder

X
f: ([11\{,]) (0,1}B X € {0,1)" < M o {0,1}8 U e > {ACK, NACK}

Erasure probability assumed to be equal to the outage probability

For evaluation we will assume:

- Poisson arrivals

- Fixed-length coding

- Rayleigh fading

- 2048 symbols

- 64 tx antennas (but no precoding)
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ARQ Model

uplink success (1 — ¢)

1_8dl/ \ &dl

feedback
decoding feedback
success decoflng fail
done
(success)

uplink fail (&)

1-— EV &11
feedback

feedback

decodin
¥ decoding fail

SUCCEeSS

1- gfy \ €fp

feedback false
feedback true positive

negative
/ \

done
(failure)

Reliable feedback is a trade-off between reliable
transmission and false positive probability
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Fixed-length Feedback with Fading

Not in green 10° | - —
state vﬁthin L : . T o t’ = . C?;at%:i:_; ZBdB . i N 50 1
iSSi Lo IS S At i * &g =V
transmissions 19~ = ,«',’,;;-f*f.ff""' E —  LESNR=-5dB ¢ K ~ Poisson(2) (iid in each
: oA 1| LB SRR = 75 dB retransmission)
= W e ST Conat SNR=04B -, Rayleigh fading
£ - ¢ ./ A ©oo BRSNR=0dB « 2048 symbols
£ 108 | ’,'_, P cil | |— LE, SNR = 0 dB . 64 tx antennas
B e 1 | LB, SNR = 0 dB - _ _
- e 1 |---  conca.SNR—5a8 | ° Markers indicate simulations
WHEE g e 1 |- EF, SNR = 5 dB
“““““““ ] e LE, SNR = 5 dB
1075 % = LB, SNR = 5 dB
- \ \ \ -
50 100 150 200
A

« More efficient coding allows for lower transmission rate

 Significantly higher reliability despite false positives
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Resolving Failures

« Some users erronously believe they succeeded when they fail

« False positives exist in all ARQ systems (CRC failures, etc.)

» Example: 16-bit CRC gives &g, ~ 1.5 107>
* ACK messages are usually designed to have &g, < &, but we
do the opposite

 Need to be resolved at higher layers, e.g., using sequence numbers
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= Acknowledgment feedback in massive random access is nontrivial
= |dentifier concatenation is highly sub-optimal

= Allowing for false positive errors significantly reduces the number of bits

required

= This leads to significant ARQ reliability gains despite false positives
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