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1 Overview of the Field
Classical Fourier analysis on the circle or the real line was motivated by the need to analyse differential
equations arising in physics. More generally, during the 20th century harmonic analysis on locally compact
abelian (LCA) groups became an important tool in diverse areas of mathematics, such as operator theory and
number theory. The theory of Banach algebras entered the picture in the mid 20th-century, when Gelfand
gave a short algebraic proof of a version of Wieners Tauberian theorem [14].

With hindsight, Gelfands proof makes use of the structural properties of the Fourier algebras of LCA
groups. In fact the Fourier algebra A(G) can be defined for any locally compact group G, as an algebra
of certain complex-valued continuous functions on G. Structural properties of Fourier algebras have been
applied to a range of phenomena in functional analysis, including: asymptotics of power-bounded opera-
tors [10]; disjointness-preservers [1]; and approximation properties for group C∗-algebras [17].

By a celebrated result of Walter [22], the Fourier algebras of two groups G and H are isometrically
isomorphic as Banach algebras if and only if G and H are isomorphic as topological groups. Thus the Fourier
algebra captures much more information about G than merely knowing its underlying topological space (for
example, SL(2,R) and SO(2)×R2 are diffeomorphic as manifolds but very different as topological groups).
It is therefore natural to study various invariants of Banach algebras, specialized to the setting of A(G), to
see what information they remember about G itself.

One such invariant is the property of amenability, which has proved to be a fundamental concept for
Banach algebras and operator algebras [21, 23]. The amenable Fourier algebras were classified by Forrest
and Runde in an extremely influential and much-cited paper [11] from 2005. A related direction of research
concerns the amenability constant of a Banach algebra, which provides a quantitative refinement of the notion
of amenability. The first significant results for amenability constants of Fourier algebras were obtained in the
1990s by Johnson [18], but only for compact groups. In particular, Johnson obtained a remarkable formula
for the amenability constant AM(A(G)) when G is finite, and used this to show that AM(A(G)) ≥ 3

2 for
every non-abelian finite group G.

The next significant work on AM(A(G)) came 10 years later, and is due to Runde in [20]; he used
operator-space methods to obtain improved upper bounds on AM(A(G)) for arbitrary G (not necessarily
compact), and he also showed that AM(A(G)) > 1 for every non-abelian (locally compact) group G.

Note that Runde’s lower bound applies to a much large class of groups, but for finite groups Johnson’s
lower bound is better. In [20], Runde himself raised the natural question of whether Johnson’s lower bound
remained valid for all non-abelian G, not just the finite ones. This problem remained open for 15 years, until
work of the lead organizer (YC), which will be discussed in the next section.
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2 Recent Developments and Open Problems
A few years ago, the lead organizer (YC) obtained new results and estimates for the amenability constants of
various Fourier algebras [3], using another invariant AD(G) that is associated directly to a given group G.
This was used to give a positive answer to the question of Runde that was mentioned in the previous section.
The results of [3] were presented at the “Canadian Abstract Harmonic Analysis Symposium 2022” workshop
(BIRS, June 17–19, 2022), where they attracted interest from the participants and were highlighted in the
scientific report for the meeting [12]. It was therefore natural to try to capitalize on the existing momentum
and make further progress, through a Research In Teams at BIRS.

The two members of this RIT have a proven track record of collaboration during the last 12 years [4, 5, 6,
7, 8, 9], but have also worked separately on the amenability constants of certain classes of Banach algebras
[2, 15]. The goal of our stay at BIRS was to have a period of focused research on the amenability constants
of Fourier algebras. In particular, we aimed to make concrete progress on the following conjecture, posed by
the lead organizer (YC) in [3].

Conjecture. For every locally compact group G, the amenability constant of A(G), which we denote by
AM(A(G)), is equal to the invariant AD(G).

If the conjecture is true, it would provide new tools for calculating or estimating AM(A(G)), since AD(G)
is known to have good functorial properties.

One natural strategy is to attack the cases of G compact and G discrete in parallel. The overlap between
the two cases is when G is finite, and in that case the conjecture is known to be true, by work of the lead
organizer [3, Theorem 1.4]. However, the proof uses the compactness and the discreteness of finite groups in
two different places, so new techniques must be developed to make progress on the general conjecture.

For countable G the lead organizer’s paper [3] provides an explicit formula for AD(G) in terms of the
Plancherel measure on the unitary dual of G. One tool that is frequently useful for describing the unitary
dual is the Mackey machine for induced representations; this is machinery with which the co-organizer has
particular expertise [16]. Our hope was that this would provide a fresh perspective.

Another idea, which has not been considered before in the literature, is to introduce and study a third
quantity AMtcb(A(G)), which is a “twisted” version of the operator-space version of the amenability con-
stant. It enjoys better properties than AM(A(G)); for instance we always have

AMtcb(A(G×H)) = AMtcb(A(G)) AMtcb(A(H)) for all groups G and H . (1)

Moreover, introducing AMtcb(A(G)) allows us to split the original problem into two halves, in the following
sense. By adapting the arguments of [11, 20], one can show that there are inequalities

AM(A(G))
(a)

≥ AMtcb(A(G))
(b)

≥ AD(G) (2)

Thus if one hopes to disprove the conjecture, it suffices to find a G for which either (a) or (b) is a strict
inequality. Conversely, if one can find new examples of G for which both (a) and (b) are equalities, these
will provide further evidence to support the conjecture.

3 Scientific Progress Made
Both organizers were keen to use the RIT week at BIRS for sustained in-person collaboration. During the
week, we worked on both the compact and the discrete cases of the main problem.

The compact case
By using an averaging argument for virtual diagonals with respect to compact group actions, we were able to
show that for every compact group G, the inequality (a) in (2) is actually an equality. That is, we have

AM(A(G)) = AMtcb(A(G)) for every compact group G. (3)
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Subsequently, we realized that these calculations provide an alternative perspective on results obtained by
Johnson in [18, §3], and are closely related to techniques used in [13, §4] to study Johnson’s algebra Aγ(G).
One advantage of our approach is that by combining the identities (1) and (3), one immediately obtains

AM(A(G×H)) = AM(A(G)) AM(A(H)) for all compact groups G and H .

This appears to be a new observation, at this level of generality; neither [18] nor [13] include this result,
although for finite groups it is stated as [18, Corollary 4.2].

We also discussed the problem of calculating AM(A(G)) for specific examples of compact virtually
abelian groups. It turns out that many of these natural examples are covered by the lead organizer’s earlier
result [3, Theorem 1.10], so we did not pursue this direction further.

One afternoon was spent trying to prove that AMtcb(A(G)) = AD(Gd) by finding a suitable lifting map
from B(Gd ×Gd) to A(G×G)∗∗. Although we did not succeed, we remain optimistic that further progress
could be made here by using tools from C∗-algebra theory (such as the weak expectation property) and the
homological theory of Banach modules. This would be a natural line of enquiry to pursue in future work.

The discrete case
In discussions following the 2022 CAHAS meeting, we had already observed that for every discrete group G,
the inequality (b) in (2) is actually an equality (this is a straightforward adaptation of arguments in [19]).

During the RIT week we attempted to prove AM(A(G)) = AMtcb(A(G)) for G discrete, but could not
see how to do this in general. We therefore adjusted our approach and chose to focus on particular families of
examples. We looked in detail at groups of the form G = H o Zp for certain abelian groups H , and worked
out the irreps and explicit coefficient functions of G, as well as the matrix-valued Fourier coefficients of the
anti-diagonal subset of G×G.

At the end of the visit, we discussed a family of groups Hq that display richer behaviour, and identified
them as the next family of examples to attack. This family occurs very naturally when considering the integer
Heisenberg group H3(Z); to be specific, Hq can be identified with the quotient of H3(Z) by an index-q
subgroup of the centre of H3(Z). Thus Hq can be viewed as a discretized version of the reduced Heisenberg
group, a nilpotent Lie group that appears in the theory of the Gabor transform for signal analysis.

We observed during the visit that, by using a result of Runde from 2006, we always have the upper bound
AM(A(Hq)) ≤ q. To put this in context: one can use the techniques of [3] to show that AD(Hq) is strictly less
than q; so if the main conjecture is true, the upper bound that is stated above cannot be optimal. Therefore,
an important task for future work will be to try and improve upon the existing bounds for AM(A(Hq)).

4 Outcome of the Meeting
Both organizers of this RIT are mid-career researchers aiming for future promotions, and the papers [4, 5],
which began our collaborative partnership, were written when we both worked at the same university and had
opportunities for sustained in-person discussions. Consequently, our week in BIRS was extremely fruitful
and productive, both for concrete progress on specific objectives, and also for planning further work and
discussing opportunities for career development.

The results we obtained formed the basis for a follow-up project, which was a successful application to the
ICMS in Edinburgh for a Research in Groups workshop (to be held in April 2025). Some of these results have
already been presented in conference talks, for example by the lead organizer (YC) at the regional conference
“Operator Algebras in the South”, Southampton, September 6–7 2024.

During the week in BIRS, we also identified natural continuations of our work, with some concrete
objectives. In particular, we decided that in future work we should focus on the groups Hq (described in
Section 3) as the next family of test cases for the main conjecture. During the months following the RIT
week in BIRS, we discussed this problem, and eventually succeeded in confirming the main conjecture for
the groups Hq when q is prime. Our approach relies on calculating the explicit Plancherel measure for Hq ,
combined with ideas from the proofs of [20, Theorem 2.7] and [3, Proposition 3.9]. These new results are
being written up as a preprint, which we aim to submit for publication later in 2025.
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We spent one afternoon during the week in BIRS discussing the antidiagonal subset of F2×F2, where F2

denotes the free group on two generators. The motivation for this comes from the following open problem:
if we consider the closure of A(F2) in its cb-multiplier algebra, then this is itself a Banach algebra; is it
amenable? Our investigations were only of a preliminary nature, but we developed some ideas that could
form part of a future grant application.

Finally: as remarked in Section 3, the techniques we used to obtain new results for compact groups are
closely related to results from [13] concerning Johnson’s algebra Aγ(G). The constructions and methods in
[13] rely on G being compact, and one interesting avenue for future work would be to identify the correct
analogue of Aγ(G) for (virtually abelian) non-compact groups.
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