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What is single particle cryo-EM?

Schematic drawing of the imaging process:

The standard cryo-EM reconstruction problem:
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The Nobel Prize in Chemistry 2017 is awarded to Jacques Dubochet, Joachim Frank
and Richard Henderson for the development of cryo-electron microscopy, which both
simplifies and improves the imaging of biomolecules. This method has moved
biochemistry into a new era. (The Royal Swedish Academy of Sciences)
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Number of Released Protein Data Bank (PDB)
Structures per Year
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Cryo-EM reconstruction from picked particlesImage Formation Model and Inverse Problem

Projection Ii

Molecule φ

Electronsource

Ri =
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 ∈ SO(3)

Projection images Ii (x , y) =
∫∞
−∞ φ(xR1

i + yR2
i + zR3

i ) dz + “noise”.

φ : R3 7→ R is the scattering potential of the molecule.

Cryo-EM core problem: Estimate φ and R1, . . . ,Rn given I1, . . . , In.
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Forward model (assuming perfectly centered picked particles and known CTF):

Ii (x , y) = hi ∗
∫ ∞
−∞

φ(xR1
i + yR2

i + zR3
i ) dz + “noise"

n images (i = 1, . . . , n) of size L× L pixels
φ : R3 7→ R is the electrostatic potential created by the molecule.
The basic “reconstruction” problem: Estimate φ given I1, . . . , In.
The “heterogeneity” problem: Estimate the distribution of φ given I1, . . . , In.
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Experimental noisy images

Figure: Kv1.2 Ion Channel. 16,911 images, 192 × 192 pixels. Data courtesy
of Dr. Fred Sigworth (Yale).

Figure: eIF2B. 99,526 images, 458 × 458 pixels. Data courtesy of Dr. Adam
Frost (UCSF) (Tsai et al., Science 2018)
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Euclidean distances in cryo-EM analysis

Noise is modeled as additive Gaussian (not necessarily white).

Likelihood based methods lead to (weighted) Euclidean distances
between images in 2-D classification, iterative 3-D model
refinement (projection matching), and more.

Error in reconstructed 3-D maps also assumed to be Gaussian.

Alignment of 3-D “half maps” and 3-D heterogeneity analysis are
based on Euclidean distances between 3-D maps.

Does it make sense to use non-Euclidean metrics for cryo-EM
analysis?
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Non-Euclidean distances in cryo-EM analysis:
Three Examples

3-D heterogeneity analysis

2-D classification

Alignment of 3-D maps
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Non-Euclidean distances for 3-D heterogeneity
analysis

Zelesko, Moscovich, Kileel, S; ISBI 2020
The goal is to learn the manifold of molecular conformations (represented as 3-D
density maps).
Euclidean distances between conformations are sensitive to deformations and
movements (rigid and non-rigid).
A large number of samples is therefore required for manifold learning techniques
such as diffusion maps.
The Earthmover’s distance (EMD) changes more gradually and is meaningful for
larger deformations and movements.

EARTHMOVER-BASED MANIFOLD LEARNING FOR ANALYZING MOLECULAR
CONFORMATION SPACES

Nathan Zelesko♠ Amit Moscovich♦ Joe Kileel♦ Amit Singer♦,♣

♠ Department of Mathematics, Brown University
♦ Program in Applied and Computational Mathematics, Princeton University

♣ Department of Mathematics, Princeton University

ABSTRACT
In this paper, we propose a novel approach for manifold
learning that combines the Earthmover’s distance (EMD)
with the diffusion maps method for dimensionality reduction.
We demonstrate the potential benefits of this approach for
learning shape spaces of proteins and other flexible macro-
molecules using a simulated dataset of 3-D density maps
that mimic the non-uniform rotary motion of ATP synthase.
Our results show that EMD-based diffusion maps require far
fewer samples to recover the intrinsic geometry than the stan-
dard diffusion maps algorithm that is based on the Euclidean
distance. To reduce the computational burden of calculating
the EMD for all volume pairs, we employ a wavelet-based
approximation to the EMD which reduces the computation of
the pairwise EMDs to a computation of pairwise weighted-`1
distances between wavelet coefficient vectors.

Index Terms— Shape space, dimensionality reduction,
Wasserstein metric, diffusion maps, Laplacian eigenmaps,
cryo-electron microscopy

1. INTRODUCTION

Proteins and other macromolecules are elastic structures that
may deform in various ways. Since the spatial conformation
of an organic molecule is known to play a key role in its
biological function, the complete description of a molecule
must include more than just a single static structure (as is tra-
ditionally produced by X-ray crystallography). Ideally, we
would like to map the entire space of molecular conforma-
tions. However, understanding the topology and geometry
of these conformation spaces remains one of the grand chal-
lenges in the field of structural biology [1].

One promising approach is to employ cryo-electron mi-
croscopy (cryo-EM) as a tool for structure determination in
the presence of conformational heterogeneity [2]. In cryo-
EM, multiple images of a particular macromolecule are taken
by a transmission electron microscope and then processed us-
ing specialized algorithms. Traditionally, these algorithms
construct an estimate of the mean molecular volume, in the

(a) (b) (c)

Fig. 1. EMD vs. Euclidean distance for translational motion.
Euclidean (or `2) distance is only meaningful for measuring
small displacements. e.g., the `2 distance between half-disks
(c) and (a) is the same as between (c) and (b). By contrast, for
any translational motion, the EMD is its magnitude.

form of a 3-D electrostatic density map. In particular, this
process averages out any variability in the spatial conforma-
tions of the molecules in the sample. Recent works have ap-
plied techniques from the field of manifold learning to cryo-
EM data sets, obtaining a low-dimensional representation of
the molecular conformation space [3, 4]. Specifically, these
works build affinity graphs based on the Euclidean distances
between molecular volumes (or projection images) and then
compute diffusion map embeddings [5, 6].

However, the Euclidean distance is suboptimal for captur-
ing the distance between geometric conformations. Consider,
for example, two conformations of a molecule that has only a
single moving part. If the two conformations are distant, the
support of the moving part in the two volumes may not inter-
sect, rendering the Euclidean distance independent of the con-
formational distance. See Fig. 1. In such cases, in order to ap-
ply manifold learning based on a Euclidean metric, one need
a dense cover of the conformation space by the molecules in
the sample. Since the number of points in such a cover scales
exponentially in the dimension, it may be infeasible to apply
these methods, even using the largest existing experimental
datasets, which consist of about n ≈ 106 samples.

In this paper, we propose to use the Earthmover’s distance
(EMD), also known as the Wasserstein metric, instead of the
commonly used Euclidean distance as input to manifold em-
bedding algorithms. EMD has an intuitive geometric mean-
ing: it measures the minimal amount of “work” needed to
transform one pile of mass into another pile of equal mass,
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EMD vs. Euclidean distance for translational motion: Euclidean distance is only
meaningful for measuring small displacements. The distance between half-disks
(c) and (a) is the same as between (c) and (b). By contrast, for any translational
motion, the EMD is its magnitude.
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Non-Euclidean distances for 3-D heterogeneity
Zelesko, Moscovich, Kileel, S; ISBI 2020

The Earthmover’s distance (EMD) changes more gradually and is meaningful for
larger deformations and movements.

Fewer samples are therefore required by EMD for manifold learning.

However, computation of EMD between all pairs of 3-D maps is costly.

Remedy: replace EMD with another metric that can be efficiently computed and
like EMD changes gradually with movements and deformations:

dEMD(xi , xj ) := min
π∈Π(xi ,xj )

∑
u∈[L]3

∑
v∈[L]3

π(u, v)‖u − v‖2,

where Π(xi , xj ) is the set of joint probability measures on [L]3 × [L]3 with
marginals xi and xj , respectively.

dWEMD(xi , xj ) :=
∑
λ

2−5s/2 |Wxi (λ)−Wxj (λ)|,

where,Wx denotes a 3D wavelet transform of x .

The wavelet transform is computed in linear time O(L3).

dWEMD is simply a weighted `1 distance between wavelet coefficients.
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Euclidean vs WEMD for 3-D shape analysis

Zelesko, Moscovich, Kileel, S; ISBI 2020

Simulated data: rotating blue shaft of the ATP synthase
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Euclidean vs WEMD for 3-D shape analysis
Zelesko, Moscovich, Kileel, S; ISBI 2020

Noiseless
Euclidean

Noiseless
WEMD

Noisy
Euclidean

Noisy
WEMD

n 25 50 100 200 400 800

Fig. 5. Main results. Euclidean vs. EMD-based diffusion mappings on the clean and noisy ATP synthase datasets for sample
sizes n = 25, 50, 100, 200, 400, 800. The Euclidean diffusion maps need more than 400 samples to capture the intrinsic
geometry whereas WEMD manages to do so with merely n = 25 samples. The colors encode the (ground truth) angle.

and the wavelet-based approximation to the EMD, as de-
scribed in the previous section. The resulting embeddings are
shown in Fig. 5. The value of the width parameter σ in the
Gaussian kernel (1) was hand-picked to yield the best results.
We note that for the Euclidean diffusion maps, careful tuning
of σ was required. However, this was not necessary for the
EMD approximation, where a wide range of σ values gave
excellent results. Running times (on an Intel Core i7) for the
computation of EMD and Euclidean-based diffusion maps
are listed in Fig. 4.

4. CONCLUSION

In this paper, we proposed to use Earthmover-based affinities
in the diffusion maps framework to analyze molecular con-
formation spaces. We showed that this results in a marked
decrease in the number of samples needed to capture the in-
trinsic conformation space of ATP synthase. The method is
computationally tractable, thanks to a fast wavelet approxi-
mation, and robust to noise. Our results show promise, par-
ticularly for the analysis of cryo-EM datasets with continuous
heterogeneity. More broadly, EMD-based manifold learning
could be applied to analyze the variability of other collec-

tions of 3-D shapes [23], 2-D images [17], videos and other
signals, e.g., to better model animal motion [24]. Our work
also raises several interesting theoretical questions: in which
cases can one prove that EMD-based manifold learning has a
lower sample complexity than manifold learning based on the
Euclidean distance? More ambitiously, are there reasonable
generative models for variability where EMD is the optimal
distance metric?

5. REPRODUCIBILITY

Code for reproducing the results in this paper is available at
http://github.com/nathanzelesko/earthmover
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Euclidean vs. WEMD-based diffusion mappings on the clean and noisy ATP synthase
datasets for sample sizes n = 25, 50, 100, 200, 400, 800. The Euclidean diffusion
maps need more than 400 samples to capture the intrinsic geometry whereas WEMD
manages to do so with merely n = 25 samples. The colors encode the (ground truth)
angle.
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Optimal transport for 2D class averaging

Rao, Moscovich, S; NeurIPS 2020
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Why 2-D Class Averaging?

Image denoising: boost the SNR for 3-D ab-initio modeling.

Quick assessment of sample preparation and data collection
quality and first glance on how 2-D projections look like, before
extensive usage of microscope time.

Revealing possible non-trivial symmetry of the molecule.

Particle picking procedures use 2-D class averaging as a step in
their pipeline.
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Basic principle of class averaging

Find images believed to have similar viewing directions, perform
in-plane rotational and translational alignment of neighboring
images, and average to suppress noise.

Main problem: How to find images with similar viewing directions?

Challenges:
1 Low SNR: difficult to detect images with similar viewing directions,

signal is buried in noise.

2 How to compare images? Which metric?

3 Computational time: Pairwise comparison of all images together
with in-plane alignment is computationally costly. It would be
preferable to have an algorithm that scales linearly with the number
of images.
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Wasserstein K-Means for Clustering Tomographic
Projections

Rao, Moscovich, S; NeurIPS 2020

Input: n noisy images I1, . . . , In.

Initialize K centers C1, . . . ,CK , e.g., by randomly choosing K of the input images.

For each image assign its closest center up to in-plane rotation in terms of dWEMD

(a total of Kn pairwise comparisons).

Form new centers by aligning and averaging the assigned images.

Repeat as long as loss function decreases.
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Wasserstein K-Means for Clustering Tomographic
Projections

Rao, Moscovich, S; NeurIPS 2020

Synthetic dataset of n = 10, 000 tomographic projections (no CTF, no shifts) of
the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug
emetine (EMD-2660)

K = 150 clusters

A visual comparison of the centroids based on rotation-aligned Euclidean (top)
vs. WEMD (bottom) (SNR=1/16)

The WEMD based clusters seem to preserve more details than those using
Euclidean distances.
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Wasserstein K-Means for Clustering Tomographic
Projections

Rao, Moscovich, S; NeurIPS 2020

Within-cluster angular differences (left to right: SNR = 1/8, 1/12, 1/16)

0° 30° 60° 90° 120° 150° 180° 0° 30° 60° 90° 120° 150° 180° 0° 30° 60° 90° 120° 150° 180°

W1 Based Algorithm
L2 Based Algorithm

The WEMD clusters have better angular coherency
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EMD between tomographic projections
Rao, Moscovich, S; NeurIPS 2020

Let ρ : R3 → R≥0 be a probability distribution supported on the 3D unit ball and
let I1 and I2 be its tomographic projections along the vectors u and v
respectively. Denote by ](u, v) ∈ [0, π] the angle between the vectors, then

W R
p (I1, I2)p ≤ [2 sin(](u, v)/2)]p ≤ ](u, v)p

where W R
p is the rotationally-invariant Wasserstein metric.

A similar upper-bound for the rotationally-invariant L2 distance cannot hold for all
densities ρ. To see why, consider an off-center point mass. Any two projections
at slightly different viewing angles will have a large LR

2 distance no matter how
small their angular difference is.
However, for densities with bounded gradients it is possible to produce upper
bounds. Let B = supx |∇ρ(x)| be an upper bound on the absolute gradient of the
density. Then,

LR
2 (I1, I2) ≤ 2

√
πB](u, v).

This bound suggests that LR
2 is a reasonable metric to use for very smooth

signals. For non-smooth signals, or signals with very large B, this means that
there is no guarantee that the LR

2 distance will assign a small distance between
projections with a small viewing angle.
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Non-Euclidean distances for 3-D volume alignment
S, Yang; arXiv 2023

The goal is to recover the relative rotation that best aligns two given volumes
φ1, φ2 (represented as 3-D density maps):

R∗ = arg min
R∈SO(3)

d
(
φ1(·), φ2(R·)

)
=: arg min

R∈SO(3)

Fd (R),

where d is a distance function.
Setting d as WEMD creates a better landscape for Fd :

Local landscapes of Fd (R) when d is WEMD and Euclidean (L2) for
R = Rz(γ) · Ry (β), γ, β ∈ [−π/2, π/2].
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Non-Euclidean distances for 3-D volume alignment

S, Yang; arXiv 2023

Employ Bayesian optimization for solving

R∗ = arg min
R∈SO(3)

dWEMD

(
φ1(·), φ2(R·)

)
=: arg min

R∈SO(3)

FWEMD(R).

Bayesian optimization is a global optimization method, hence less prone to get
stuck at local optima than gradient based methods, improving accuracy.

Bayesian optimization explores only “high probability regions”, therefore
requiring fewer evaluations of FWEMD than exhaustive search based methods,
improving efficiency.
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Non-Euclidean distances for 3-D volume alignment
Comparison with existing methods for the following test volumes: S, Yang; arXiv 2023

EMD-4547

L = 280

EMD-10180

L = 320

EMD-25892

L = 320

EMD-2660

L = 360

The three boxplots in each subfigure correspond to (from left to right) BOTalign (our
method), EMalign (Harpaz and Shkolnisky, 2023), and AlignOT (Riahi et al, 2022).
The vertical axis represents rotation recovery error in degrees. The tick labels record
the average run time in seconds.
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9/6/23, 11:41 AM ComputationalCryoEM/ASPIRE-Python: Algorithms for Single Particle Reconstruction

https://github.com/ComputationalCryoEM/ASPIRE-Python 1/3

Algorithms for Single Particle Reconstruction

spr.math.princeton.edu

 GPL-3.0 license

 Code of conduct

 37 stars  19 forks  8 watching  Activity

Public repository

 Branches  Tags

View code

ASPIRE Python Pip CIASPIRE Python Pip CI passingpassing codecovcodecov 89%89%  DOIDOI 10.5281/zenodo.565728110.5281/zenodo.5657281  downloads/monthdownloads/month 525525

ASPIRE - Algorithms for Single Particle Reconstruction - v0.12.0
The ASPIRE-Python project supersedes Matlab ASPIRE.

ASPIRE is an open-source software package for processing single-particle cryo-EM data to determine three-dimensional structures of
biological macromolecules. The package includes advanced algorithms based on rigorous mathematics and recent developments in
statistics and machine learning. It provides unique and improved solutions to important computational challenges of the cryo-EM
processing pipeline, including 3-D ab-initio modeling, 2-D class averaging, automatic particle picking, and 3-D heterogeneity analysis.

For more information about the project, algorithms, and related publications please refer to the ASPIRE Project website.

For full documentation and tutorials see the docs.

Please cite using the following DOI. This DOI represents all versions, and will always resolve to the latest one.

ComputationalCryoEM /
ASPIRE-Python

Code Issues 113 Pull requests 4 Discussions Actions Projects 4 Wiki Security Insights

 main 

garrettwrong reconcile rebase … 19 hours ago  4,197

ComputationalCryoEM/ASPIRE-Python: v0.12.0 https://doi.org/10.5281/zenodo.5657281

README.md
https://github.com/ComputationalCryoEM/ASPIRE-Python

http://spr.math.princeton.edu/
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Summary

Three examples (heterogeneity analysis, 2-D classification, 3-D
alignment) from cryo-EM analysis where non-Euclidean metrics
(Wasserstein and related distances) outperform Euclidean
distances.

.
Noise statistics suggests optimality of Euclidean distances, but the
underlying signals (projection images, density maps) are better
compared using non-Euclidean distances.

More applications and other metrics (work in progress)
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