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What is single particle cryo-EM?

Schematic drawing of the imaging process:

electron beam
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The standard cryo-EM reconstruction problem:

tomographic image 3-D structure
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W/ : The Royal Swedish Academy :,f;;-..m has decided to award the -‘ﬂ
2017 NOBEL PRIZE IN CHEMISTRY

| acq es Ii-ct'“
Joachim Frank
Richard Henderson

“for developing cryo-electron microscopy for the high-resolution structure
determination of biomolecules in solution”

The Nobel Prize in Chemistry 2017 is awarded to Jacques Dubochet, Joachim Frank
and Richard Henderson for the development of cryo-electron microscopy, which both
simplifies and improves the imaging of biomolecules. This method has moved

biochemistry into a new era. (The Royal Swedish Academy of Sciences)
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Cryo-EM reconstruction from picked particles

: } €50(3)

Blgghe

@ Forward model (assuming perfectly centered picked particles and known CTF):

(X, y) = b+ / S(xR! + yR? + zR%) dz + “noise”

@ nimages (i=1,...,n) of size L x L pixels
@ ¢ : R® — Ris the electrostatic potential created by the molecule.
@ The basic “reconstruction” problem: Estimate ¢ given /i, ..., I,.

@ The “heterogeneity” problem: Estimate the distribution of ¢ given I, ..., I
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Experimental noisy images

Figure: Kv1.2 lon Channel. 16,911 images, 192 x 192 pixels. Data courtesy
of Dr. Fred Sigworth (Yale).

Figure: elF2B. 99,526 images, 458 x 458 pixels. Data courtesy of Dr. Adam
Frost (UCSF) (Tsai et al., Science 2018)
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Euclidean distances in cryo-EM analysis

@ Noise is modeled as additive Gaussian (not necessarily white).

@ Likelihood based methods lead to (weighted) Euclidean distances
between images in 2-D classification, iterative 3-D model
refinement (projection matching), and more.

@ Error in reconstructed 3-D maps also assumed to be Gaussian.

@ Alignment of 3-D “half maps” and 3-D heterogeneity analysis are
based on Euclidean distances between 3-D maps.

@ Does it make sense to use non-Euclidean metrics for cryo-EM
analysis?
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Non-Euclidean distances in cryo-EM analysis:

Three Examples

@ 3-D heterogeneity analysis

@ 2-D classification

@ Alignment of 3-D maps
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Non-Euclidean distances for 3-D heterogeneity

analysis

Zelesko, Moscovich, Kileel, S; ISBI 2020

@ The goalis to learn the manifold of molecular conformations (represented as 3-D
density maps).

@ Euclidean distances between conformations are sensitive to deformations and
movements (rigid and non-rigid).

@ A large number of samples is therefore required for manifold learning techniques
such as diffusion maps.

@ The Earthmover’s distance (EMD) changes more gradually and is meaningful for
larger deformations and movements.

(A A

(a) (b) ©

EMD vs. Euclidean distance for translational motion: Euclidean distance is only

meaningful for measuring small displacements. The distance between half-disks
(c) and (a) is the same as between (c) and (b). By contrast, for any translational

motion, the EMD is its magnitude.
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Non-Euclidean distances for 3-D heterogeneity

Zelesko, Moscovich, Kileel, S; ISBI 2020

@ The Earthmover’s distance (EMD) changes more gradually and is meaningful for
larger deformations and movements.

@ Fewer samples are therefore required by EMD for manifold learning.

However, computation of EMD between all pairs of 3-D maps is costly.

@ Remedy: replace EMD with another metric that can be efficiently computed and
like EMD changes gradually with movements and deformations:

Gewn (X, %) == min > " a(u,v)||lu— v,

WEH(XV X/ UE[L]3 VE[L]S
where M(x;, x;) is the set of joint probability measures on [L]® x [L]* with
marginals x; and x;, respectively.
dhwenp (X, X)) == > 272 xi(A) = Wx (N,
A

where, Wx denotes a 3D wavelet transform of x.
@ The wavelet transform is computed in linear time O(L?).
@ dwewmp is simply a weighted ¢; distance between wavelet coefficients.
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Euclidean vs WEMD for 3-D shape analysis

Zelesko, Moscovich, Kileel, S; 1ISBI 2020

@ Simulated data: rotating blue shaft of the ATP synthase

== Euclidean
—— WEMD
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Euclidean vs WEMD for 3-D shape analysis

Zelesko, Moscovich, Kileel, S; ISBI 2020
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Euclidean vs. WEMD-based diffusion mappings on the clean and noisy ATP synthase
datasets for sample sizes n = 25,50, 100, 200, 400, 800. The Euclidean diffusion

maps need more than 400 samples to capture the intrinsic geometry whereas WEMD
manages to do so with merely n = 25 samples. The colors encode the (ground truth)

angle.
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Optimal transport for 2D class averaging

Rao, Moscovich, S; NeurlPS 2020
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Why 2-D Class Averaging?

@ Image denoising: boost the SNR for 3-D ab-initio modeling.

@ Quick assessment of sample preparation and data collection
quality and first glance on how 2-D projections look like, before
extensive usage of microscope time.

@ Revealing possible non-trivial symmetry of the molecule.

@ Particle picking procedures use 2-D class averaging as a step in
their pipeline.
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Basic principle of class averaging

@ Find images believed to have similar viewing directions, perform
in-plane rotational and translational alignment of neighboring
images, and average to suppress noise.

@ Main problem: How to find images with similar viewing directions?

@ Challenges:
@ Low SNR: difficult to detect images with similar viewing directions,
signal is buried in noise.

©@ How to compare images? Which metric?

© Computational time: Pairwise comparison of all images together
with in-plane alignment is computationally costly. It would be
preferable to have an algorithm that scales linearly with the number
of images.
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Wasserstein K-Means for Clustering Tomographic

Projections

Rao, Moscovich, S; NeurlPS 2020

@ Input: nnoisy images h, ..., In.
@ Initialize K centers Cy, ..., Ck, e.g., by randomly choosing K of the input images.
@ For each image assign its closest center up to in-plane rotation in terms of dwemp

(a total of Kn pairwise comparisons).

@ Form new centers by aligning and averaging the assigned images.

Repeat as long as loss function decreases.
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Wasserstein K-Means for Clustering Tomographic

Projections

Rao, Moscovich, S; NeurlPS 2020

@ Synthetic dataset of n = 10,000 tomographic projections (no CTF, no shifts) of
the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug
emetine (EMD-2660)

@ K = 150 clusters

@ A visual comparison of the centroids based on rotation-aligned Euclidean (top)
vs. WEMD (bottom) (SNR=1/16)

@ The WEMD based clusters seem to preserve more details than those using
Euclidean distances.
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Wasserstein K-Means for Clustering Tomographic

Projections

Rao, Moscovich, S; NeurlPS 2020

@ Within-cluster angular differences (left to right: SNR = 1/8,1/12,1/16)
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@ The WEMD clusters have better angular coherency
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EMD between tomographic projections

Rao, Moscovich, S; NeurlPS 2020
@ Let p: R® — Rx be a probability distribution supported on the 3D unit ball and
let /; and & be its tomographic projections along the vectors u and v
respectively. Denote by £(u, v) € [0, 7] the angle between the vectors, then

Wi (h, k)P < [2sin(£(u, v)/2)]P < £L(u, V)P

where W is the rotationally-invariant Wasserstein metric.

@ A similar upper-bound for the rotationally-invariant L, distance cannot hold for all
densities p. To see why, consider an off-center point mass. Any two projections
at slightly different viewing angles will have a large L5 distance no matter how
small their angular difference is.

@ However, for densities with bounded gradients it is possible to produce upper
bounds. Let B = sup, |V p(x)| be an upper bound on the absolute gradient of the
density. Then,

LE(h, k) < 2y/7BL(u, V).
@ This bound suggests that L% is a reasonable metric to use for very smooth
signals. For non-smooth signals, or signals with very large B, this means that

there is no guarantee that the L5 distance will assign a small distance between
projections with a small viewing angle.

Amit Singer (Princeton University) September 2023 19/25



Non-Euclidean distances for 3-D volume alignment

S, Yang; arXiv 2023
@ The goal is to recover the relative rotation that best aligns two given volumes
o1, @2 (represented as 3-D density maps):
R* = argmin d(¢1(-), $2(R-)) =: argmin F4(R),
ReSO(3) ReSO(3)
where d is a distance function.
@ Setting d as WEMD creates a better landscape for Fy:

WEMD Euclidean
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Local landscapes of Fy(R) when d is WEMD and Euclidean (L?) for
R=R:(v)-Ry(B),~,B € [-n/2,7/2].
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Non-Euclidean distances for 3-D volume alignment

S, Yang; arXiv 2023

@ Employ Bayesian optimization for solving

R =arg m|n dwemp (¢1(-), ¢2(R-)) =: arg min Fwemp(R).
RESO RESO(3)

@ Bayesian optimization is a global optimization method, hence less prone to get
stuck at local optima than gradient based methods, improving accuracy.

@ Bayesian optimization explores only “high probability regions”, therefore
requiring fewer evaluations of Fwemp than exhaustive search based methods,
improving efficiency.
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Non-Euclidean distances for 3-D volume alignment

Comparison with existing methods for the following test volumes: S, Yang; arXiv 2023

EMD-4547 EMD-10180 EMD-25892 EMD-2660
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The three boxplots in each subfigure correspond to (from left to right) BOTalign (our
method), EMalign (Harpaz and Shkolnisky, 2023), and AlignOT (Riahi et al, 2022).

The vertical axis represents rotation recovery error in degrees. The tick labels record
the average run time in seconds.
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% ASPIRE

Algorithms for Single Particle Reconstruction

ASPIRE Python Pip CI fpassing codecov 89% f§§ DOI 10.5281/zenodo.5657281 § downloads/month 525

ASPIRE - Algorithms for Single Particle Reconstruction - v0.12.0

The ASPIRE-Python project supersedes Matlab ASPIRE.

ASPIRE is an open-source software package for processing single-particle cryo-EM data to determine three-dimensional structures of
biological macromolecules. The package includes advanced algorithms based on rigorous mathematics and recent developments in
statistics and machine learning. It provides unique and improved solutions to important computational challenges of the cryo-EM
processing pipeline, including 3-D ab-initio modeling, 2-D class averaging, automatic particle picking, and 3-D heterogeneity analysis.

For more information about the project, algorithms, and related publications please refer to the ASPIRE Project website.
For full documentation and tutorials see the docs.

Please cite using the following DOI. This DOI represents all versions, and will always resolve to the latest one.

ComputationalCryoEM/ASPIRE-Python: v@.12.0 https://doi.org/10.5281/zenodo.5657281 [_‘T—‘

https://github.com/ComputationalCryoEM/ASPIRE-Python

http://spr.math.princeton.edu/
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@ Three examples (heterogeneity analysis, 2-D classification, 3-D
alignment) from cryo-EM analysis where non-Euclidean metrics
(Wasserstein and related distances) outperform Euclidean
distances.

@ Noise statistics suggests optimality of Euclidean distances, but the
underlying signals (projection images, density maps) are better
compared using non-Euclidean distances.

@ More applications and other metrics (work in progress)
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Thank You!
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