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Abstract
This report documents a 2023 Banff International Research Station for Mathematical In-

novation and Discovery (BIRS) workshop that united international experts from academia,
industry, and national laboratories in the field of Scientific Machine Learning (SciML). The
workshop successfully fostered collaboration among researchers from diverse backgrounds,
including applied mathematics, myriad engineering disciplines, scientific computing, opti-
mization, and machine learning. The event endeavored to stimulate innovation in the field
through scientific talks and open interactions aimed at various scientific and engineering ap-
plications.

1 Introduction
Scientific Machine Learning (SciML) is an evolving discipline that melds machine learning (ML)
principles with scientific computing, paving the way for groundbreaking innovations in science
and engineering. Recognizing the immense potential and rapid developments in this field, the 2023
BIRS Workshop on Scientific Machine Learning aimed to provide a fertile ground for collaboration
and knowledge exchange.

2 Overview of the Field
SciML is a burgeoning interdisciplinary field that marries traditional scientific computing with ad-
vanced ML techniques. At its core, SciML seeks to harness the power of ML models, such as
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deep neural networks, to accelerate and enhance the simulation, modeling, and analysis processes
inherent in scientific disciplines. This fusion allows for more sophisticated handling of complex
systems and phenomena, from predicting turbulent flows in fluid dynamics to optimizing molecular
configurations in material science. Through leveraging data-driven ML methodologies alongside
traditional physics-based models, SciML is redefining the boundaries of computational capabili-
ties and the accuracy of predictions, making it possible to tackle previously intractable scientific
problems.

However, the union of scientific computing and machine learning is not without its challenges.
It demands a robust understanding of both domains, ensuring that the integrity of scientific princi-
ples is maintained while employing ML techniques. To this end, researchers in SciML are continu-
ously working on innovative algorithms and frameworks that can seamlessly integrate the strengths
of both worlds. The goal is to create models that are not only highly accurate but also interpretable,
trustworthy, and aligned with the underlying scientific principles. As SciML continues to evolve,
its applications are anticipated to proliferate across various scientific sectors, heralding a new era
of research and discovery.

3 Recent Developments
SciML has witnessed many innovations in recent years, dramatically reshaping the landscape of
scientific research. One of the most notable advancements is the integration of neural ordinary dif-
ferential equations (neural ODEs). This approach allows researchers to leverage neural networks
within ordinary differential equations, enabling the simultaneous learning of dynamic system be-
havior from data while maintaining a structured model format. This blend aids in improving com-
putational efficiency, reducing the amount of data needed for accurate predictions, and providing a
more interpretable model structure that aligns with scientific principles. Neural ODEs have found
applications in various domains, including fluid dynamics, pharmacokinetics, and even in some
areas of finance.

Another example of SciML are physics-informed neural networks (PINNs) [23]. These net-
works incorporate known physical laws (like conservation laws) through a loss function, effec-
tively bridging the gap between data-driven approaches and theoretical knowledge. By constrain-
ing neural network training with these laws, PINNs ensure that the resultant models are not just
data-adaptive but also physically consistent. This integration has proven particularly valuable in
scenarios with sparse or noisy data, where traditional machine learning models might overfit or
produce non-physical results.

A groundbreaking current research direction in SciML is operator learning. Operator learning
broadly refers to various machine learning strategies for learning maps between (formally infinite-
dimensional) function spaces, such as those containing functions that parametrize PDEs, as well
as the functions who solve them. Accurate operator approximations can be substituted for ex-
pensive physics simulations in “many-query” settings which required repeated PDE solutions for
differing parameters. Examples of many query problems include inverse problems (both determin-
istic and Bayesian), optimization problems (e.g., design and control) among other tasks. A major
recent breakthrough in operator learning are the so-called “neural operators”, which use neural
network approximations married with classical mathematical tools to exploit known structure of
problems, while leveraging ML technologies to learn complex nonlinear representations from data
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and physics. For instance, Fourier Neural Operators [14] leverage the Fourier transform’s effi-
ciency to predict complex physical behaviors in various spatial dimensions. Another example is
the DeepONet [15], which learns operators by treating them as mappings from functions to func-
tions, utilizing two interacting neural networks — a branch network and a trunk network. The
potential to represent and predict scientific phenomena with unprecedented accuracy is immensely
expanded through these advanced neural architectures.

The 2023 BIRS Workshop on Scientific Machine Learning featured numerous talks on neural
ODEs, PINNs, and neural operators, as well as numerous other emerging methodologies such as
statistical inference methods and high performance computing considerations. The talks spanned
algorithmic innovation, approximation theory and applications to complex physical systems.

4 Presentations
The following is a list of the presentations given at the workshop:

Monday, June 19, 2023

1. Panos Stinis, Pacific Northwest National Laboratory, Computational Mathematics Group:
“Mutlifidelity Scientific Machine Learning”. [10]

2. Romit Maulik, The Pennsylvania State University, Department of Information Science and
Technology: “Multiscale Graph Neural Network Autoencoders for Interpretable Scientific
Machine Learning” [2]

3. Scott Field, The University of Massachusetts, Dartmouth, Department of Mathematics: “Po-
tential Applications of Scientific Machine Learning to the Binary Black Hole Problem” [12]

4. Bart van Bloemen Waanders, Sandia National Laboratories, Scientific Machine Learning
group: “Learning control policies for high-fidelity models using hyper-differential sensitivi-
ties with respect to model discrepancy” [9]

5. Animashree Anandkumar, NVIDIA and California Institute of Technology, Computing and
Mathematical Sciences: “Neural Operators for Accelerating Scientific Simulations ” [14, 22]

6. Michael Brennan, Massachusetts Institute of Technology, Computational Science & Engi-
neering: “Exploiting Low-Rank Conditional Structure to Solve Bayesian Inverse Problems”
[4]

Tuesday, June 20, 2023

7. Yunan Yang, Cornell University, Department of Mathematics: “Neural Inverse Operators for
Solving PDE Inverse Problems” [19]

8. Aras Bacho, Ludwig Maximilian University of Munich, Department of Mathematics: “Pois-
sonNet: Resolution-Agnostic 3D Shape Reconstruction using Fourier Neural Operators” [1]

9. Eric Cyr, Sandia National Laboratories, Computational Mathematics Group: “Exploiting
time-domain parallelism to accelerate neural network training” [20]
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10. Paolo Zunino, MOX - Modelling and Scientific Computing - Politecnico di Milano: “A Deep
Learning approach to Reduced Order Modeling of parameter dependent Partial Differential
Equations” [6]

11. Robert Scheichl, Heidelberg University, Department of Mathematics: “Structure-preserving
learning of embedded closure models for fluid flows”.

12. N. Sukumar, The University of California, Davis, Department of Civil and Environmental
Engineering: “Exact Imposition of Boundary Conditions in PINNs to Solve PDEs”

13. Mihai Nica, the University of Guelph, Department of Mathematics and Statistics: “A derivative-
free method for solving elliptic partial differential equations with deep neural networks” [8]

14. Deepanshu Verma, Emory University:, Department of Mathematics “Advances and chal-
lenges in solving high-dimensional Hamilton-Jacobi-Bellman equations”

Wednesday, June 21, 2023

15. Jakob Zech, Heidelberg University, Department of Mathematics: “Nonparametric Distribu-
tion Learning via Neural ODEs” [18]

16. Nicholas Nelsen, The California Insitute of Technology, Division of Engineering and Ap-
plied Science: “Convergence Theorem for Vector-Valued Random Features” [13]

17. Margaret Trautner, The California Insitute of Technology, Department of Computing +
Mathematical Sciences: “Learning Homogenized Constitutive Laws” [3]

18. Guang Lin, Purdue University, Departments of Mathematics, Statistics & School of Mechan-
ical Engineering: “ Energy Dissipative Evolutionary Deep Operator Networks” [24]

19. Thomas O’Leary-Roseberry, The University of Texas at Austin, Oden Institute for Computa-
tional Engineering & Sciences: “Derivative-Informed Neural Operators for High-Dimensional
Outer-Loop Problems” [21]

20. Jinwoo Go, Georgia Institute of Technology, School of Computational Science and Engi-
neering: “Accelerating A-Optimal/D-Optimal Design of Experiments Using Neural Net-
works”

21. Dingcheng Luo, The University of Texas at Austin, Oden Institute for Computational En-
gineering & Sciences: “Efficient PDE-constrained optimization with derivative-informed
neural operators” [16]

22. Bruno Despres, Jacques-Louis Lions Laboratory Sorbonne University: “Generating func-
tions for polynomials with ReLU: application to training”

23. Marta D’Elia, Pasteur Labs: “GNN-based physics solver for time-independent PDEs” [7]

24. Shunyuan Mao, University of Victoria, Department of Physics and Astronomy: “PPDONet:
Deep Operator Networks for Fast Prediction of Steady-State Solutions in Disk-Planet Sys-
tems” [17]



5

Thursday, June 22, 2023

25. Petros Koumoutsakos, Harvard University, Institute for Applied Computational Science:
“AI/Scientific Computing: Alloys for Flow modeling and Control” [11]

26. Peng Chen, Georgia Institute of Technology, School of Computational Science and Engi-
neering: “ Projected variational inference for high-dimensional Bayesian inverse problems”
[5]

27. Lu Lu, Yale University, Department of Statistics and Data Science: “Deep neural operators
with reliable extrapolation for multiphysics, multiscale & multifidelity problems” [15, 25]

5 Scientific Progress Made
Participants of the 2023 BIRS Workshop on Scientific Machine Learning experienced a unique
forum for knowledge exchange, collaborative problem solving, and exposure to cutting-edge the-
ories and methods. The gathering served as a fertile ground for cross-pollinating ideas from vari-
ous mathematical disciplines and applications while staying focused on developing new SciML
methodologies. Senior researchers presented recent advancements, novel theories, and break-
through methodologies, which helped to inspire younger researchers and offer fresh perspectives
on both new and longstanding problems. Concurrently, the collaborative atmosphere of the work-
shop helped to catalyze the genesis of new research directions, as attendees often engaged in rig-
orous discussions that challenged existing paradigms and used the allotted time for unstructured
interactions to brainstorm innovative solutions. Beyond the immediate dissemination of knowl-
edge, we hope that the workshop has helped sow the seeds for future collaborations, publications,
and even entirely new research domains, further solidifying BIRS’s role as an essential catalyst in
the relentless journey of mathematical discovery.

6 Hybrid format
The hybrid format was beneficial because it allowed us to significantly expand the scope of our
workshop. Due to the hybrid format, we were able to bring in a number of very high-impact remote
presenters that would otherwise not have been able to speak. Additionally, we were able to engage
a number of remote participants, including researchers who had difficulties obtaining Canadian
visas in time and early career grad students who were not able to attend.

The major benefit of the workshop, however, was the in-person interactions and open discus-
sions that happened in response to and in addition to the technical talks. Part of what really made
the workshop work as well was the scale of it: since there were fewer participants, people got to
know each other better than they otherwise would have, which led to deeper engagement with the
technical material and enlightening discussions about the future of the field. For this reason, the
hybrid format was non-essential, and it would make sense to make the event only in person.
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7 Participant Testimonials
We received the following public testimonial from Robert Scheichl of the Institute for Mathematics
& Interdisciplinary Center of Scientific Computing, Heidelberg University:

“The workshop provided an excellent venue for interaction on this exciting and boom-
ing new research area. I would like to congratulate and thank the organisers for putting
together a very well-balanced and high-profile line-up of talks. The interaction and
engagement of participants at BIRS was great. It did showcase several new research
avenues to me that will be highly influential in my future research; it did, however,
also show the limitations of certain approaches. Participants were open for a non-
competitive and unbiased discussion of competing potential approaches in the area of
scientific machine learning. I particularly appreciated that a strong emphasis at this
workshop was given to promising young and upcoming researchers, who brought a
lot of enthusiasm, energy and willingness to engage and interact. The talks were well
chosen and the things I took away will definitely influence my immediate hiring deci-
sions. The concluding discussions on Friday on the wider discipline and on how this
new field should be shaped was particularly useful and via an editorial piece we plan
to write for a special journal issue should provide some lasting impact for the wider
research field.”

8 Outcomes of the Meeting
The workshop brought together an international and interdisciplinary group of researchers that
would not otherwise have assembled to discuss the issues and challenges of the emerging field of
scientific machine learning.

The countries represented were Canada, France, Germany, France, New Zealand, and the USA.
The disciplines represented include computational and applied mathematics, information science,
scientific machine learning, computational science & engineering, aerospace engineering, chem-
ical engineering, civil engineering, mechanical engineering, physics, and astrophysics, spanning
academia, labs, and industry.

In the workshop, key emerging areas of promise within SciML were identified, while honest
critical debate led to a better understanding of the limitations of the field. This gave clarity to future
directions of interest in the field. We hope that numerous collaborations and international research
correspondences will arise due to this workshop. The organizers can attest personally that this is
already a takeaway from this event.

The workshop will culminate in a special issue (SI) in the American Institute for Mathematical
Sciences Foundations of Data Science (FoDS) journal. The SI will be guest-edited by the BIRS
organizers. Additionally, a position paper summarizing the findings of some discussions at the
workshop will accompany this issue.
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