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Inverse Problems

The modeling step (the forward problem)

Well-Known Inverse Problems:
Locate Earthquake Source, Image the Black Hole, X-ray/CT/Ultrasound
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General “Inverse Problems”

Inverse data matching problems aim at finding m such that the predicted
outputs (X, F(m)) match given measured data (X, Y).
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Calderón’s Problem (Electrical Impedance Tomography, EIT)

— Wikipedia

{
∇ · (a(x)∇u) = 0, x ∈ Ω

u(x) = ψ, x ∈ ∂Ω

Given “Dirichlet-to-Neumann” map
Λa : H1/2(∂Ω) −→ H−1/2(∂Ω)

Λa : ψ −→ a∇uψ · n,
the goal is to find

a(x), x ∈ Ω.

Kohn, R. V., & Vogelius, M. (1987). Relaxation of a variational method
for impedance computed tomography. CPAM.
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Waveform Inversion (FWI)

— Wikipedia


m(x)

∂2u(x, t)
∂t2 −4u(x, t) = s(x, t)

Zero i.c. in half-space Ω

Neumann b.c. on ∂Ω

m(x) =
1

c(x)2 , c(x) is the wave velocity
Given u(xr, yr, z = 0, t) the goal is to find

m(x), x ∈ Ω.

Tarantola, A. (2005). Inverse problem theory and methods for model
parameter estimation. SIAM.
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Helmholtz Equation Based Inversion

— Wikipedia


4u + ω2m(x)u = s(x, ω)

Neumann b.c. on ∂Ω

m(x) =
1

c(x)2 , c(x) is the wave velocity

Given u(xr, yr, z = 0;ω) the goal is to find

m(x), x ∈ Ω.

Colton, David L., Rainer Kress. Inverse acoustic and electromagnetic
scattering theory. Vol. 93. Berlin: Springer, 1998.
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Topological (Shape) Optimization

The fluid (gas) domain in flow
channel design problems

Sato et al. (2019). A topology optimization method in

rarefied gas flow problems using the Boltzmann eqn.


∂f
∂t + v · ∇xf = − ρ

kn
(f − f eq(ρ, u, T))

f (0, x, v) = f0 on D
f = f eq(ρb, ub, Tb) on ∂Ω

The goal is to find

Ω

that minimizes an objective function∫
t

∫
Ωe

∫
R3

r(v)f (t, x, v)dvdxdt,

on some evaluation domain Ωe.
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Learning the Dynamics

“Chen” System [Chen-Ueta, 1999]

Y.-Nurbekyan-Negrini-Martin-Pasha, 2023. Optimal

transport for parameter identification of chaotic

dynamics via invariant measures. SIADS.

A general parameterized dynamical
system may take the formẋ

ẏ
ż

 = v(x, y, z;σ, ρ, β︸ ︷︷ ︸
θ

) ≈ v(x, θ)

where v ≈ v(·, θ) can be

• polynomials,

• basis functions,

• neural networks, and so on,

where θ corresponds to

• expansion coe�cients,

• neural network weights, etc.
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Image Processing

fε

u

Denoising, Deblurring, Blind
Deconvolution (nonlinear)...

fε = A(σ)u + ε

where A(σ) could be

• Identity I (denoising)

• Known Kernel K (deblurring)

• Unknown Kernel A(σ) (blind
deconvolution, nonlinear)
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The Forward Model F(m)

F is given; we just find m (e.g., PDEs).
• Pro: We know the best (exact) forward problem!
• Con: The forward and inverse problems are so nonlinear!

OR
F is not known; we are free to choose (e.g., XXX-net).

• Pro: The freedom to modify it to a “better” map
• Over-Parametrization;
• Model Extension;
• Model Reduction.

• Con: Trial and error to build the model
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How to Solve F(m) = g

� Linear Inverse Problem, i.e., Am = g
(often combined with numerical linear algebra)
• Direct Method
• Iterative Method
• Optimization-Based Method (e.g., least-squares min)

� Nonlinear Inverse Problem, F(m) = g
• Direct Method (challenging to construct) (in today’s talk)
• Iterative Method (e.g., nonlinear GMRES)
• Optimization Method
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Learn a Direct Inverse Map



Example: Calderón’s Problem

{
∇ · (a(x)∇u) = 0, x ∈ Ω

u(x) = ψ, x ∈ ∂Ω

Given Dirichlet-to-Neumann map
Λa : H1/2(∂Ω) −→ H−1/2(∂Ω)

Λa : ψ −→ a∇uψ · n,
the goal is to find

a(x), x ∈ Ω.

In suitable settings, it is provable
that there exists an inverse
problem with (log-) stability.
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The Data Acquisition

Recall that the data is an operator on the continuous level
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The Training Data Acquisition

We provide
(

a(i), {Ψ(i)
` }`

)
as the training data for i = 1, . . . ,n

number of di�erent parameter samples with a(i) ∼ µa.

{Ψ(i)
` }` ≈ µΨ = Λa(i)]µg , µg fixed.
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The Neural Network Architecture

NN1 : DeepONet

NN2 : FNO 15



The Neural Network Architecture

DeepONet FNO

The proposed Neural Inverse Operator (NIO)

An Intuition:
DeepONet: {Ψ`} 7→ {f`} (analogy: {a∇uψ · n} on ∂Ω to {uψ} on Ω)

FNO: {f`} 7→ a (analogy: {uψ} on Ω to a on Ω)
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The Neural Network Architecture

DeepONet (NN1) FNO (NN2)

NIO
(
Λa]µg

)
= NN2

(
NN1]

(
Λa]µg

)︸ ︷︷ ︸
µΨ

)
→ a.

One concern: NN does not know {Ψ`} are samples of µΨ and
similarly {f`} are samples of an underlying distribution.

We want: (1) permutation invariant; (2) di�erent a can have
di�erent L; (3) testing data can have a di�erent L
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The Training Scheme — Bagging — “Randomized Batching”

Rich theoretical analysis in Bagging from statistical learning.
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Numerical Results



EIT Examples

{
∇ · (a(x)∇u) = 0, x ∈ Ω

u(x) = ψ, x ∈ ∂Ω

Given DtN map
Λa : H1/2(∂Ω) −→ H−1/2(∂Ω)

Λa : ψ −→ a∇uψ · n,
the goal is to find a(x), x ∈ Ω.
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RTE Inversion Examples

v · ∇zu(z, v) + σa(z)u(z, v)

=
1
ε

a(z)Q[u], z ∈ D

u(z, v) = φ(z, v), z ∈ Γ−

Given the Albedo operator

Λa : L1(Γ−) 7→ L1(Γ+)

Λa : u
∣∣
Γ−

= φ 7→ u
∣∣
Γ+
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Wave Inversion Results

utt(t, z) + a(z)2∆u = s,
(z, t) ∈ D× [0, T],

Given the Source-to-Receiver
(StR) operator,

Λa : L2([0, T]× D) 7→ L2([0, T]; XR),

Λa : s 7→ u
∣∣
[0,T]×R, 23
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Testing Performance Comparison
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Compare with PDE-Constrained Optimization

The ill-posed Calderón Problem (inverse Darcy flow){
∇ · (a(x)∇u) = 0, x ∈ Ω

u(x) = ψ, x ∈ ∂Ω

min
a∈A(D)

L∑
i=1

dist(Fi(a),dobs
i ) s.t. PDE constraints

Di�culty in PDE-Constrained optimization: high wavenumber (i.e., edges) 26



Compare with PDE-Constrained Optimization

The full waveform inversion (FWI) problem
utt(t, z) + a2(z)∆u = s,

(z, t) ∈ D× [0, T],

min
a∈A(D)

L∑
i=1

dist(Fi(a),dobs
i ) s.t. PDE constraints

Di�culty in PDE-Constrained optimization: local minima
27



Conclusions



Summary and Future Directions

Summary
• We consider a large class of PDE-based inverse problems that are

“solvable” only when providing a data operator (e.g., DtN, Albedo).

• Learn mappings from operators to functions to solve inverse problem.

• Motivated by the inverse-problem nature, we proposed a novel
architecture, termed Neural Inverse Operator (NIO), based on a
composition of DeepONet and FNO.

• Random batching to inform FNO the input is an empirical distribution.

Future Directions

1. Conduct theoretical analysis on the generalization error

2. How do di�erent ways of representing Λa a�ect convergence?

3. How does the PDE inverse problem stability improve using statistical
learning-type of algorithms?
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