Neural Inverse Operators for Solving PDE Inverse Problems

Yunan Yang

June 20, 2023

Advanced Fellow, Institute for Theoretical Studies, ETH Zürich (Starting July 1st) Assistant Professor, Department of Mathematics, Cornell University

BIRS Scientific Machine Learning Workshop, June 18-23, 2023

The Collaborators

Roberto Molinaro Björn Engquist Siddhartha Mishra

The paper https://arxiv.org/pdf/2301.11167.pdf is to appear at ICML 2023.

1

$$\begin{array}{ccc} \mathbf{m} \longrightarrow & \mathbf{F} & \longrightarrow & \mathbf{d} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

The modeling step (the forward problem)

Well-Known Inverse Problems:

Locate Earthquake Source, Image the Black Hole, X-ray/CT/Ultrasound

General "Inverse Problems"

Inverse data matching problems aim at finding m such that the predicted outputs (X, F(m)) match given measured data (X, Y).

Calderón's Problem (Electrical Impedance Tomography, EIT)

$$\begin{cases} \nabla \cdot (\boldsymbol{a}(\boldsymbol{x}) \nabla \boldsymbol{u}) = \boldsymbol{0}, & \boldsymbol{x} \in \Omega \\ \boldsymbol{u}(\boldsymbol{x}) = \psi, & \boldsymbol{x} \in \partial \Omega \end{cases}$$

Given "Dirichlet-to-Neumann" map $\Lambda_a : \mathcal{H}^{1/2}(\partial \Omega) \longrightarrow \mathcal{H}^{-1/2}(\partial \Omega)$ $\Lambda_a : \psi \longrightarrow a \nabla u_{\psi} \cdot \mathbf{n},$ the goal is to find

 $a(x), x \in \Omega.$

Kohn, R. V., & Vogelius, M. (1987). Relaxation of a variational method for impedance computed tomography. CPAM.

- Wikipedia

Waveform Inversion (FWI)

 $\begin{cases} m(\mathbf{x}) \frac{\partial^2 u(\mathbf{x}, t)}{\partial t^2} - \bigtriangleup u(\mathbf{x}, t) = \mathbf{s}(\mathbf{x}, t) \\ \text{Zero i.c. in half-space } \Omega \\ \text{Neumann b.c. on } \partial \Omega \end{cases}$

 $m(\mathbf{x}) = \frac{1}{c(\mathbf{x})^2}, c(\mathbf{x}) \text{ is the wave velocity}$ Given $u(x_r, y_r, z = 0, t)$ the goal is to find

 $m(x), x \in \Omega.$

Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. SIAM.

- Wikipedia

Helmholtz Equation Based Inversion

 $\begin{cases} \triangle u + \omega^2 m(x) u = s(x, \omega) \\ \text{Neumann b.c. on } \partial \Omega \end{cases}$

 $m(\mathbf{x}) = \frac{1}{c(\mathbf{x})^2}$, $c(\mathbf{x})$ is the wave velocity

Given $u(x_r, y_r, z = 0; \omega)$ the goal is to find

 $m(x), x \in \Omega.$

Colton, David L., Rainer Kress, Inverse acoustic and electromaanetic scattering theory, Vol. 93, Berlin: Springer, 1998.

Wikipedia

Topological (Shape) Optimization

The fluid (gas) domain in flow channel design problems

Sato et al. (2019). A topology optimization method in rarefied gas flow problems using the Boltzmann eqn.

$$\begin{cases} \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = -\frac{\rho}{k_n} \left(f - f^{eq}(\rho, \mathbf{u}, T) \right) \\ f(\mathbf{0}, \mathbf{x}, \mathbf{v}) = f_0 \text{ on } D \\ f = f^{eq}(\rho_b, \mathbf{u}_b, T_b) \text{ on } \partial \Omega \end{cases}$$

The goal is to find

Ω

that minimizes an objective function

$$\int_t \int_{\Omega_e} \int_{\mathbb{R}^3} r(\mathbf{v}) f(t, \mathbf{x}, \mathbf{v}) d\mathbf{v} d\mathbf{x} dt,$$

on some evaluation domain Ω_e .

Learning the Dynamics

"Chen" System [Chen-Ueta, 1999]

Y.-Nurbekyan-Negrini-Martin-Pasha, 2023. Optimal transport for parameter identification of chaotic dynamics via invariant measures. SIADS. A general parameterized dynamical system may take the form

$$\begin{pmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{y}} \\ \dot{\mathbf{z}} \end{pmatrix} = \mathbf{v}(\mathbf{x}, \mathbf{y}, \mathbf{z}; \underbrace{\boldsymbol{\sigma}, \boldsymbol{\rho}, \boldsymbol{\beta}}_{\boldsymbol{\theta}}) \approx \mathbf{v}(\mathbf{x}, \boldsymbol{\theta})$$

where $v \approx v(\cdot, \theta)$ can be

- polynomials,
- basis functions,
- neural networks, and so on,

where θ corresponds to

- · expansion coefficients,
- neural network weights, etc.

Image Processing

и

Denoising, Deblurring, Blind Deconvolution (nonlinear)...

 $f_{\epsilon} = \mathsf{A}(\sigma)\mathsf{U} + \epsilon$

where $A(\sigma)$ could be

- Identity I (denoising)
- Known Kernel K (deblurring)
- Unknown Kernel A(σ) (blind deconvolution, nonlinear)

F is given; we just find m (e.g., PDEs).

- Pro: We know the best (exact) forward problem!
- Con: The forward and inverse problems are so nonlinear!

OR

F is not known; we are free to choose (e.g., XXX-net).

- Pro: The freedom to modify it to a "better" map
 - Over-Parametrization;
 - Model Extension;
 - Model Reduction.
- Con: Trial and error to build the model

How to Solve F(m) = g

Linear Inverse Problem, i.e., Am = g (often combined with numerical linear algebra)

- Direct Method
- Iterative Method
- Optimization-Based Method (e.g., least-squares min)

How to Solve F(m) = g

Linear Inverse Problem, i.e., Am = g (often combined with numerical linear algebra)

- Direct Method
- Iterative Method
- Optimization-Based Method (e.g., least-squares min)

<u>Nonlinear</u> Inverse Problem, F(m) = g

- Direct Method (challenging to construct) (in today's talk)
- Iterative Method (e.g., nonlinear GMRES)
- Optimization Method

Learn a Direct Inverse Map

Example: Calderón's Problem

$$\begin{cases} \nabla \cdot (\boldsymbol{a}(\boldsymbol{x}) \nabla \boldsymbol{u}) = \boldsymbol{0}, & \boldsymbol{x} \in \Omega \\ \boldsymbol{u}(\boldsymbol{x}) = \psi, & \boldsymbol{x} \in \partial \Omega \end{cases}$$

Given Dirichlet-to-Neumann map $\Lambda_a : \mathcal{H}^{1/2}(\partial \Omega) \longrightarrow \mathcal{H}^{-1/2}(\partial \Omega)$ $\Lambda_a : \psi \longrightarrow a \nabla u_{\psi} \cdot \mathbf{n},$ the goal is to find

 $a(x), x \in \Omega.$

In suitable settings, it is provable that there exists an inverse problem with (log-) stability.

The Data Acquisition

Recall that the data is an **operator** on the continuous level

The Training Data Acquisition

We provide $(a^{(i)}, \{\Psi_{\ell}^{(i)}\}_{\ell})$ as the training data for i = 1, ..., nnumber of different parameter samples with $a^{(i)} \sim \mu_a$.

$$\{\Psi_\ell^{(i)}\}_\ell pprox \mu_{m \Psi} = {\sf A}_{{\sf a}^{(i)}} \sharp \mu_{m g} \ , \quad \mu_{m g} \ {
m fixed}.$$

NN1: DeepONet

DeepONet FNO

The proposed Neural Inverse Operator (NIO)

An Intuition: DeepONet: $\{\Psi_{\ell}\} \mapsto \{f_{\ell}\}$ (analogy: $\underline{\{a\nabla u_{\psi} \cdot \mathbf{n}\}}$ on $\partial\Omega$ to $\underline{\{u_{\psi}\}}$ on Ω) FNO: $\{f_{\ell}\} \mapsto a$ (analogy: $\overline{\{u_{\psi}\}}$ on Ω to $\underline{a \text{ on } \Omega}$)

DeepONet (NN₁)

 $FNO(NN_2)$

$$NIO\left(\Lambda_{a}\sharp\mu_{g}\right)=NN_{2}\left(NN_{1}\sharp\underbrace{\left(\Lambda_{a}\sharp\mu_{g}\right)}_{\mu_{\Psi}}\right)\rightarrow a.$$

$$NIO\left(\Lambda_{a}\sharp\mu_{g}\right)=NN_{2}\left(NN_{1}\sharp\underbrace{\left(\Lambda_{a}\sharp\mu_{g}\right)}_{\mu_{\Psi}}\right)
ightarrow a.$$

One concern: NN does not know $\{\Psi_{\ell}\}$ are samples of μ_{Ψ} and similarly $\{f_{\ell}\}$ are samples of an underlying distribution.

DeepONet (NN₁)

 $FNO(NN_2)$

$$NIO\left(\Lambda_a \sharp \mu_g\right) = NN_2\left(NN_1 \sharp \underbrace{\left(\Lambda_a \sharp \mu_g\right)}_{\mu_{\Psi}}\right) \to a.$$

One concern: NN does not know $\{\Psi_{\ell}\}$ are samples of μ_{Ψ} and similarly $\{f_{\ell}\}$ are samples of an underlying distribution. We want: (1) permutation invariant; (2) different *a* can have

different L; (3) testing data can have a different L

The Training Scheme — Bagging — "Randomized Batching"

The Training Scheme — Bagging — "Randomized Batching"

Rich theoretical analysis in Bagging from statistical learning.

Numerical Results

EIT Examples

4

$$\begin{cases} \nabla \cdot (\boldsymbol{a}(\boldsymbol{x}) \nabla \boldsymbol{u}) = \boldsymbol{o}, & \boldsymbol{x} \in \Omega \\ \boldsymbol{u}(\boldsymbol{x}) = \psi, & \boldsymbol{x} \in \partial \Omega \end{cases}$$

Given DtN map $\Lambda_a : \mathcal{H}^{1/2}(\partial \Omega) \longrightarrow \mathcal{H}^{-1/2}(\partial \Omega)$ $\Lambda_a : \psi \longrightarrow a \nabla u_{\psi} \cdot \mathbf{n},$ the goal is to find $a(x), x \in \Omega$.

EIT Examples

$$\begin{cases} \nabla \cdot (\boldsymbol{a}(\boldsymbol{x}) \nabla \boldsymbol{u}) = \boldsymbol{\mathsf{o}}, & \boldsymbol{x} \in \Omega \\ \boldsymbol{u}(\boldsymbol{x}) = \psi, & \boldsymbol{x} \in \partial \Omega \end{cases}$$

Given DtN map $\Lambda_a : \mathcal{H}^{1/2}(\partial \Omega) \longrightarrow \mathcal{H}^{-1/2}(\partial \Omega)$ $\Lambda_a : \psi \longrightarrow a \nabla u_{\psi} \cdot \mathbf{n},$ the goal is to find $a(x), x \in \Omega$.

EIT Examples

4

$$\begin{cases} \nabla \cdot (\boldsymbol{a}(\boldsymbol{x}) \nabla \boldsymbol{u}) = \boldsymbol{0}, & \boldsymbol{x} \in \Omega \\ \boldsymbol{u}(\boldsymbol{x}) = \psi, & \boldsymbol{x} \in \partial \Omega \end{cases}$$

Given DtN map $\Lambda_a : \mathcal{H}^{1/2}(\partial \Omega) \longrightarrow \mathcal{H}^{-1/2}(\partial \Omega)$ $\Lambda_a : \psi \longrightarrow a \nabla u_{\psi} \cdot \mathbf{n},$ the goal is to find $a(x), x \in \Omega$.

RTE Inversion Examples

$$\begin{aligned} \mathbf{v} \cdot \nabla_{\mathbf{z}} u(\mathbf{z}, \mathbf{v}) &+ \sigma_{\mathbf{a}}(\mathbf{z}) u(\mathbf{z}, \mathbf{v}) \\ &= \frac{1}{\epsilon} \mathbf{a}(\mathbf{z}) Q[u], \, \mathbf{z} \in \mathbf{D} \\ u(\mathbf{z}, \mathbf{v}) &= \phi(\mathbf{z}, \mathbf{v}), \, \mathbf{z} \in \mathbf{\Gamma}_{-} \end{aligned}$$

Given the Albedo operator

$$\Lambda_a: L^1(\Gamma_-) \mapsto L^1(\Gamma_+)$$

$$\Lambda_a: u\big|_{\Gamma_-} = \phi \mapsto u\big|_{\Gamma_+}$$

Wave Inversion Results

$$u_{tt}(t,z) + \mathbf{a}(z)^2 \Delta u = \mathbf{s},$$

 $(z,t) \in \mathbf{D} \times [\mathbf{0},T],$

Given the Source-to-Receiver (StR) operator,

 $\Lambda_a: L^2([0,T] \times D) \mapsto L^2([0,T];X_R),$ $\Lambda_a: \mathbf{s} \mapsto u |_{[\mathbf{0},T] \times R},$ 23

Wave Inversion Results

G

$$egin{aligned} u_{tt}(t,z) + oldsymbol{a}(z)^2 \Delta u &= s, \ (z,t) \in D imes [0,T] \end{aligned}$$

Given the *Source-to-Receiver* (StR) operator,

$$\begin{split} &\Lambda_a: L^2([0,T]\times D)\mapsto L^2([0,T];X_R),\\ &\Lambda_a: s\mapsto u\big|_{[0,T]\times R}, \end{split}$$

	DONet		FCNN		NIO	
	$L^1\downarrow$	$L^2\downarrow$	$L^1\downarrow$	$L^2\downarrow$	$L^1\downarrow$	$L^2\downarrow$
EIT Trigonometric	1.97%	2.36%	1.49%	1.82%	0.85%	1.05%
EIT Heart&Lungs	0.95%	3.69%	0.27%	1.62%	0.18%	1.16%
EIT Inclusion Detection	3.83%	7.41%	2.53%	7.55%	1.07%	2.94%
Optical Imaging	2.35%	4.35%	1.46%	3.71%	1.1%	2.9%
Seismic Imaging - CurveVel - A	3.98%	5.86%	2.65%	5.05%	2.71%	4.71%
Seismic Imaging - Style - A	3.82%	5.17%	3.12%	4.63%	3.04%	4.36%

Compare with PDE-Constrained Optimization

The ill-posed Calderón Problem (inverse Darcy flow)

$$\begin{cases} \nabla \cdot (\mathbf{a}(\mathbf{x})\nabla u) = \mathbf{0}, & \mathbf{x} \in \Omega \\ u(\mathbf{x}) = \psi, & \mathbf{x} \in \partial \Omega \end{cases}$$

$$\min_{a \in A(D)} \sum_{i=1}^{L} \operatorname{dist}(\mathcal{F}_i(a), d_i^{\operatorname{obs}}) \quad s.t. \text{ PDE constraints}$$

26

Difficulty in PDE-Constrained optimization: high wavenumber (i.e., edges)

Compare with PDE-Constrained Optimization

The full waveform inversion (FWI) problem $u_{tt}(t,z) + a^2(z)\Delta u = s,$

 $(z,t)\in D imes [0,T],$

 $\min_{a \in A(D)} \sum_{i=1}^{L} \operatorname{dist}(\mathcal{F}_{i}(a), d_{i}^{\operatorname{obs}}) \quad s.t. \text{ PDE constraints}$

Difficulty in PDE-Constrained optimization: local minima

Conclusions

Summary

 We consider a large class of PDE-based inverse problems that are "solvable" only when providing a data operator (e.g., DtN, Albedo).

- We consider a large class of PDE-based inverse problems that are "solvable" only when providing a data operator (e.g., DtN, Albedo).
- Learn mappings from operators to <u>functions</u> to solve inverse problem.

- We consider a large class of PDE-based inverse problems that are "solvable" only when providing a data operator (e.g., DtN, Albedo).
- Learn mappings from operators to <u>functions</u> to solve inverse problem.
- Motivated by the inverse-problem nature, we proposed a novel architecture, termed Neural Inverse Operator (NIO), based on a composition of DeepONet and FNO.

- We consider a large class of PDE-based inverse problems that are "solvable" only when providing a data operator (e.g., DtN, Albedo).
- Learn mappings from operators to <u>functions</u> to solve inverse problem.
- Motivated by the inverse-problem nature, we proposed a novel architecture, termed Neural Inverse Operator (NIO), based on a composition of DeepONet and FNO.
- Random batching to inform FNO the input is an *empirical distribution*.

- We consider a large class of PDE-based inverse problems that are "solvable" only when providing a data operator (e.g., DtN, Albedo).
- Learn mappings from operators to <u>functions</u> to solve inverse problem.
- Motivated by the inverse-problem nature, we proposed a novel architecture, termed Neural Inverse Operator (NIO), based on a composition of DeepONet and FNO.
- Random batching to inform FNO the input is an *empirical distribution*.

Summary

- We consider a large class of PDE-based inverse problems that are "solvable" only when providing a data operator (e.g., DtN, Albedo).
- Learn mappings from operators to <u>functions</u> to solve inverse problem.
- Motivated by the inverse-problem nature, we proposed a novel architecture, termed Neural Inverse Operator (NIO), based on a composition of DeepONet and FNO.
- Random batching to inform FNO the input is an *empirical distribution*.

Future Directions

1. Conduct theoretical analysis on the generalization error

Summary

- We consider a large class of PDE-based inverse problems that are "solvable" only when providing a data operator (e.g., DtN, Albedo).
- Learn mappings from operators to <u>functions</u> to solve inverse problem.
- Motivated by the inverse-problem nature, we proposed a novel architecture, termed Neural Inverse Operator (NIO), based on a composition of DeepONet and FNO.
- Random batching to inform FNO the input is an *empirical distribution*.

Future Directions

- 1. Conduct theoretical analysis on the generalization error
- 2. How do different ways of representing Λ_a affect convergence?

Summary

- We consider a large class of PDE-based inverse problems that are "solvable" only when providing a data operator (e.g., DtN, Albedo).
- Learn mappings from operators to <u>functions</u> to solve inverse problem.
- Motivated by the inverse-problem nature, we proposed a novel architecture, termed Neural Inverse Operator (NIO), based on a composition of DeepONet and FNO.
- Random batching to inform FNO the input is an *empirical distribution*.

Future Directions

- 1. Conduct theoretical analysis on the generalization error
- 2. How do different ways of representing Λ_a affect convergence?
- 3. How does the PDE inverse problem stability improve using statistical learning-type of algorithms?

Thanks for the workshop organizers! All my collaborators.