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N.H.N. and Andrew M. Stuart

The Random Feature Model for Input-Output Maps between Banach Spaces

SIAM Journal on Scientific Computing, Vol. 43, No. 5, pp. A3212–A3243, 2021.



Random Features

Random feature map (X and Y infinite-dimensional)

ϕ : X ×Θ→ Y and a probability measure µ

Parametric model (looks like Monte Carlo)

ΨRFM(u;α) :=
1

M

M∑
m=1

αmϕ(u; θm), θm
iid∼ µ

N.H. Nelsen (Caltech) Convergence of Random Features BIRS June 2023 3 / 11



Random Feature Ridge Regression

Data
un

iid∼ ν and yn = Ψ†(un) + Noise for n = 1, . . . , N

Convex problem (RF-RR)

α̂(N,M,λ) := arg min
α∈RM

{
1

N

N∑
n=1

∥∥yn −ΨRFM(un;α)
∥∥2
Y + λ

( 1

M

M∑
m=1

|αm|2
)}
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Error Bounds for Learning with Vector-Valued Random Features

Submitted 2023 (arXiv:2305.17170 stat.ML)

https://arxiv.org/abs/2305.17170


Well-Specified Error Analysis (for any input and output dimension)

Trained RFM ΨRFM( · ; α̂(N,M,λ)), where α̂(N,M,λ) ∈ RM solves RF-RR

Assumptions (no spectral assumptions on K are needed due to matrix-free analysis)

I yn = Ψ†(un) + ηn, where ηn
iid∼ η is subexponential on Y

I Ψ† and ϕ are bounded a.s.

Theorem (Squared error: well-specified convergence rate)

If Ψ† belongs to the RKHS of the RF pair (ϕ, µ) (relaxations too), then

Eu∼ν
∥∥Ψ†(u)−ΨRFM(u; α̂(N,M,λ))

∥∥2
Y . λ+

1

M
+

1√
N

with high probability.
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Comparison to Existing Well-Specified Results

Recall notation

I Regularization parameter: λ

I Training data sample size: N

I Number of random features: M

Paper Approach λ dim(Y) M Squared Error

Rahimi & Recht ’08 “kitchen sinks” — 1 N ω(N−1/2)

Rudi & Rosasco ’17 matrix concen. N−1/2 1
√
N log(N) O(N−1/2)

Li et al. ’21 matrix concen. N−1/2 1
√
N log(O(N)) O(N−1/2)

This Talk (SOTA) “kitchen sinks” N−1/2 ∞
√

N O(N−1/2)

N.H. Nelsen (Caltech) Convergence of Random Features BIRS June 2023 7 / 11



Core Proof Idea

Loss
L(u;α) :=

∥∥Ψ†(u)−ΨRFM(u;α)
∥∥2
Y

Error decomposition (Rahimi & Recht ’08)

Eu∼ν
[
L(u; α̂(N,M,λ))

]︸ ︷︷ ︸
squared error

=
1

N

N∑
n=1

L(un; α̂(N,M,λ))︸ ︷︷ ︸
empirical approximation error (Monte Carlo)

+

[
Eu∼ν

[
L(u; α̂(N,M,λ))

]
− 1

N

N∑
n=1

L(un; α̂(N,M,λ))

]
︸ ︷︷ ︸

generalization gap (linearity and empirical processes)
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Unifying Sources of Error

Approximation, finite data, noise, and discretization (optimization error is zero)

Corollary (Stability to discretization error)

Let the data be discretized as
yn = Ψ†h(un) + ηn ,

where h > 0 denotes a discretization parameter corresponding to bounded discretized
operator Ψ†h. If bounded Ψ† belongs to the RKHS of (ϕ, µ), then λ � N−1/2 �M−1

guarantees that

Eu∼ν
∥∥Ψ†(u)−ΨRFM(u; α̂(N,M,λ))

∥∥2
Y .

1√
N

+ ε2h with high probability ,

where the discretization error is

εh := ess sup
u∼ν

‖Ψ†(u)−Ψ†h(u)‖Y .
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Model Misspecification

Theorem (Strong statistical consistency)

If the number of features M = Ω̃(
√
N) and the penalty strength λ = Ω̃(1/

√
N), then

lim
N→∞

Eu∼ν
∥∥Ψ†(u)−ΨRFM(u; α̂(N,MN ,λN ))

∥∥2
Y = 0 with probability one.

(Above, Ψ† is just bounded)

Theorem (Squared error: slow rates)

If Ψ† does not belong to the RKHS of (ϕ, µ) but satisfies a “regularity source condition,”
and M �

√
N and λ � 1/

√
N , then there exists 0 < r ≤ 1/2 such that

Eu∼ν
∥∥Ψ†(u)−ΨRFM(u; α̂(N,M,λ))

∥∥2
Y . N−r with high probability.
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Summary

Complete theory for vector-valued RF-RR algorithm

I Statistical consistency of RF for supervised learning and UQ

I SOTA rates in any dimension (matrix-free analysis)

I Includes error due to model misspecification and discretization
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