Convergence Theory for Vector-Valued Random Features

Nicholas H. Nelsen

Caltech

Email: nnelsen@caltech.edu Web: nicholashnelsen.com

Supported By: Amazon, NSF, ONR, AFOSR, DOD

BIRS Scientific Machine Learning Workshop Banff, Alberta, Canada

June 2023

N.H.N. and Andrew M. Stuart

The Random Feature Model for Input-Output Maps between Banach Spaces

SIAM Journal on Scientific Computing, Vol. 43, No. 5, pp. A3212–A3243, 2021.

Random feature map (\mathcal{X} and \mathcal{Y} infinite-dimensional)

 $\varphi \colon \mathcal{X} \times \Theta \to \mathcal{Y}$ and a probability measure μ

Parametric model (looks like Monte Carlo)

$$\Psi_{\rm RFM}(u;\alpha) \coloneqq \frac{1}{M} \sum_{m=1}^{M} \alpha_m \varphi(u;\theta_m), \quad \theta_m \stackrel{\rm iid}{\sim} \mu$$

Random Feature Ridge Regression

Data

$$u_n \stackrel{\text{iid}}{\sim} \nu$$
 and $y_n = \Psi^{\dagger}(u_n) + \text{Noise}$ for $n = 1, \dots, N$

Convex problem (RF-RR)

$$\hat{\alpha}^{(N,M,\lambda)} \coloneqq \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^M} \left\{ \frac{1}{N} \sum_{n=1}^N \left\| y_n - \Psi_{\mathrm{RFM}}(u_n;\alpha) \right\|_{\mathcal{Y}}^2 + \lambda \left(\frac{1}{M} \sum_{m=1}^M |\alpha_m|^2 \right) \right\}$$

Samuel Lanthaler and N.H.N.

Error Bounds for Learning with Vector-Valued Random Features

Submitted 2023 (arXiv:2305.17170 stat.ML)

Trained RFM
$$\Psi_{\text{RFM}}(\,\cdot\,;\hat{lpha}^{(N,M,\lambda)})$$
, where $\hat{lpha}^{(N,M,\lambda)} \in \mathbb{R}^M$ solves RF-RR

Assumptions (no spectral assumptions on K are needed due to matrix-free analysis) • $y_n = \Psi^{\dagger}(u_n) + \eta_n$, where $\eta_n \stackrel{\text{iid}}{\sim} \eta$ is subexponential on \mathcal{Y}

• Ψ^{\dagger} and φ are bounded a.s.

Theorem (Squared error: well-specified convergence rate)

If Ψ^{\dagger} belongs to the RKHS of the RF pair $(arphi,\mu)$ (relaxations too), then

$$\mathbb{E}^{u \sim \nu} \left\| \Psi^{\dagger}(u) - \Psi_{\text{RFM}}(u; \hat{\alpha}^{(N,M,\lambda)}) \right\|_{\mathcal{Y}}^{2} \lesssim \lambda + \frac{1}{M} + \frac{1}{\sqrt{N}} \quad \text{with high probability.}$$

Comparison to Existing Well-Specified Results

Recall notation

- Regularization parameter: λ
- ▶ Training data sample size: N
- Number of random features: M

Paper	Approach	λ	$\dim(\mathcal{Y})$	M	Squared Error
Rahimi & Recht '08	"kitchen sinks"	_	1	N	$\omega(N^{-1/2})$
Rudi & Rosasco '17	matrix concen.	$N^{-1/2}$	1	$\sqrt{N}\log(N)$	$O(N^{-1/2})$
Li et al. '21	matrix concen.	$N^{-1/2}$	1	$\sqrt{N}\log(O(N))$	$O(N^{-1/2})$
This Talk (SOTA)	"kitchen sinks"	$N^{-1/2}$	∞	\sqrt{N}	$O(N^{-1/2})$

Core Proof Idea

Loss

$$L(u;\alpha) \coloneqq \left\| \Psi^{\dagger}(u) - \Psi_{\rm RFM}(u;\alpha) \right\|_{\mathcal{Y}}^2$$

generalization gap (linearity and empirical processes)

Unifying Sources of Error

Approximation, finite data, noise, and discretization

(optimization error is zero)

Corollary (Stability to discretization error)

Let the data be discretized as

$$y_n = \Psi_h^\dagger(u_n) + \eta_n \,,$$

where h > 0 denotes a discretization parameter corresponding to bounded discretized operator Ψ_h^{\dagger} . If bounded Ψ^{\dagger} belongs to the RKHS of (φ, μ) , then $\lambda \asymp N^{-1/2} \asymp M^{-1}$ guarantees that

$$\mathbb{E}^{u \sim \nu} \left\| \Psi^{\dagger}(u) - \Psi_{\text{RFM}}(u; \hat{\alpha}^{(N,M,\lambda)}) \right\|_{\mathcal{Y}}^{2} \lesssim \frac{1}{\sqrt{N}} + \varepsilon_{h}^{2} \text{ with high probability},$$

where the discretization error is

$$\varepsilon_h \coloneqq \operatorname{ess\,sup}_{u \sim \nu} \| \Psi^{\dagger}(u) - \Psi^{\dagger}_h(u) \|_{\mathcal{Y}} \,.$$

Theorem (Strong statistical consistency)

If the number of features $M = \widetilde{\Omega}(\sqrt{N})$ and the penalty strength $\lambda = \widetilde{\Omega}(1/\sqrt{N})$, then

 $\lim_{N\to\infty}\mathbb{E}^{u\sim\nu}\left\|\Psi^{\dagger}(u)-\Psi_{\mathrm{RFM}}(u;\hat{\alpha}^{(N,M_N,\lambda_N)})\right\|_{\mathcal{Y}}^2=0 \quad \text{with probability one}.$

(Above, Ψ^{\dagger} is just bounded)

Theorem (Squared error: slow rates)

If Ψ^{\dagger} does not belong to the RKHS of (φ, μ) but satisfies a "regularity source condition," and $M \asymp \sqrt{N}$ and $\lambda \asymp 1/\sqrt{N}$, then there exists $0 < r \le 1/2$ such that

 $\mathbb{E}^{u \sim \nu} \| \Psi^{\dagger}(u) - \Psi_{\text{RFM}}(u; \hat{\alpha}^{(N,M,\lambda)}) \|_{\mathcal{V}}^2 \lesssim N^{-r} \text{ with high probability.}$

Theorem (Strong statistical consistency)

If the number of features $M = \widetilde{\Omega}(\sqrt{N})$ and the penalty strength $\lambda = \widetilde{\Omega}(1/\sqrt{N})$, then

 $\lim_{N\to\infty} \mathbb{E}^{u\sim\nu} \left\| \Psi^{\dagger}(u) - \Psi_{\rm RFM}(u; \hat{\alpha}^{(N,M_N,\lambda_N)}) \right\|_{\mathcal{Y}}^2 = 0 \quad \text{with probability one.}$

(Above, Ψ^{\dagger} is just bounded)

Theorem (Squared error: slow rates)

If Ψ^{\dagger} does not belong to the RKHS of (φ, μ) but satisfies a "regularity source condition," and $M \asymp \sqrt{N}$ and $\lambda \asymp 1/\sqrt{N}$, then there exists $0 < r \le 1/2$ such that

 $\mathbb{E}^{u \sim \nu} \left\| \Psi^{\dagger}(u) - \Psi_{\text{RFM}}(u; \hat{\alpha}^{(N,M,\lambda)}) \right\|_{\mathcal{Y}}^{2} \lesssim N^{-r} \text{ with high probability.}$

Complete theory for vector-valued RF-RR algorithm

Statistical consistency of RF for supervised learning and UQ

SOTA rates in any dimension (matrix-free analysis)

Includes error due to model misspecification and discretization