
Energy-Dissipative Evolutionary Deep Operator
Neural Networks

Jiahao Zhang

Shiheng Zhang

Jie Shen

Guang Lin

https://arxiv.org/abs/2306.06281

Objectives

• Construct an evolutionary neural network to solve Gradient flow problem in non-data

driven setting.

• Perform operator learning on a kind of PDEs with different parameters in a single neural

network.

• Introduce the modified energy and apply the SAV method to keep the unconditionally

modified energy dissipative law.

• Introducing the adaptive time stepping and restart strategy to speed the training process.

• Developing a new gradient-based optimization algorithm for various optimization tasks.

Purdue 2023– 2

Problem Setting

Consider a general gradient flow problem,

∂u

∂t
+Nx(u) = 0

u(x, 0) = f(x)
(1)

where u ∈ Rl, Nx(u) can be written as a variational derivative of a free energy functional

E[u(x)] bounded from below, Nx(u) =
δE
δu

. The first step is to approximate the initial

condition operator with DeepONet.

For an operator G, G : u(x) 7→ f(x), the data feed into the DeepONet is in the form

(u, y,G(u)(y)). It is obtained by the given initial conditions.

G(u)(x) ≈
p∑

k=1

gkbk (2)

Purdue 2023– 3

The DeepONet Model

Theorem 0.1 (Universal Approximation Theorem for Operator) Suppose that Ω1 is a

compact set in X, X is a Banach Space, V is a compact set in C(Ω1), Ω2 is a compact set in

Rd, σ is a continuous non-polynomial function, G is a nonlinear continuous operator, which

maps v into C(Ω2), then for any ϵ > 0, there are positive integers M,N,m, constants

cki , ζk, ξ
k
ij ∈ R, points ωk ∈ Rn, xj ∈ K1, i = 1, · · · ,M , k = 1, · · · , N, j = 1, · · · ,m, such that

| G(u)(y)−
N∑

k=1

M∑
i=1

cki σ

 m∑
j=1

ξkiju (xj) + θki

 · σ (ωk · y + ζk) |< ϵ

holds for all u ∈ V and y ∈ Ω2.

Purdue 2023– 4

Evolutionary Network

Denoting the parameters in the branch network as W1 and the parameters in the trunk network

as W2, W1 and W2 can be regarded a function of t since they change in every time step.

According to the derivative’s chain rule, we have

∂u

∂t
=

∂u

∂W1

∂W1

∂t
+

∂u

∂W2

∂W2

∂t
(3)

Since u =
∑p

k=1 gkbk =
∑p

k=1 gk(W1(t))bk(W2(t)), then

∂u

∂t
=

p∑
k=1

∂gk(W1(t))

∂W1

∂W1

∂t
bk(W2(t)) +

p∑
k=1

gk(W1(t))
∂bk(W2(t))

∂W2

∂W2

∂t
(4)

Our objective is to obtain ∂W1
∂t

and ∂W2
∂t

, the update rule for parameters. It is equivalent to

solve a minimization problem, [
∂W1

∂t
;
∂W2

∂t

]
= argminJ (γ1, γ2) (5)

where

J (γ1, γ2) =
1

2

∥∥∥∥∥
p∑

k=1

∂gk(W1(t))

∂W1
γ1bk(W2(t)) +

p∑
k=1

gk(W1(t))
∂bk(W2(t))

∂W2
γ2 −Nx(u)

∥∥∥∥∥
2

2

(6)

Purdue 2023– 5

Evolutionary Network

By denoting

(J1)ij1 =

p∑
k=1

∂gk(W1(t))

∂W j1
1

bik(W2(t)) (7)

(J2)ij2 =

p∑
k=1

gk(W1(t))
∂bik(W2(t))

∂W j2
2

(8)

(N)i = N
(
ui
x

)
(9)

By denoting γopt
i as optimal values of γi, i = 1, 2, The minimization problem can be

transformed into a linear system by the first-order optimal condition.

JT
1

(
γopt
1 J1 + γopt

2 J2 −N
)
= 0 (10)

JT
2

(
γopt
1 J1 + γopt

2 J2 −N
)
= 0 (11)

The feasible solutions of the above equations are the approximated time derivatives of W1 and

W2.

dW1

dt
= γopt

1 (12)

dW2

dt
= γopt

2 (13)

Purdue 2023– 6

Energy Dissipative Evolutionary Deep Operator Neural Network

Let’s reconsider the given problem.

∂u

∂t
+Nx(u) = 0

u(x, 0) = f(x)
(14)

where u ∈ Rl, Nx(u) can be written as a variational derivative of a free energy functional

E[u(x)] bounded from below, Nx(u) =
δE
δu

. Taking the inner product with Nx(u) of the first

equation, we obtain the energy dissipation property

dE[u(x)]

dt
=

(
δE

δu
,
∂u

∂t

)
=

(
Nx(u),

∂u

∂t

)
− (Nx(u),Nx(u)) ≤ 0 (15)

However, it is usually hard for a numerical algorithm to be efficient as well as energy

dissipative. The SAV approach was introduced to construct numerical schemes which is energy

dissipative with a modified energy. Assuming E[u(x)] > 0, it introduces a r(t) =
√

E[u(x, t)],

and expands the gradient flow problem as

∂u

∂t
= −

r√
E(u)

Nx (u)

rt =
1

2
√

E(u)

(
Nx (u) ,

∂u

∂t

) (16)

With r(0) =
√

E[u(x, t)], the above system has a solution r(t) ≡
√

E[u(x, t)] and u being the

solution of the original problem.

Purdue 2023– 7

First order scheme

By setting un =
∑p

k=1 gkbk, a first order scheme can be constructed as

un+1 − un

∆t
= −

rn+1√
E(un)

Nx(u
n)

rn+1 − rn

∆t
=

1

2
√

E(un)

∫
Ω
Nx(u

n)
un+1 − un

∆t
dx.

(17)

Plugging the first equation into the second one, we obtain:

rn+1 − rn

∆t
= −

rn+1

2E(un)
∥Nx(u

n)∥2, (18)

which implies

rn+1 =

(
1 +

∆t

2E(un)
∥Nx(u

n)∥2
)−1

rn (19)

Theorem 0.2 (Discrete Energy Dissipation Law) With the modified energy define above,

the scheme is unconditionally energy stable, i.e.

(rn+1)2 − (rn)2 ≤ 0. (20)

Purdue 2023– 8

Algorithm

The corresponding linear system of the first order optimal condition is

JT
1

(
γopt
1 J1 + γopt

2 J2 −
rn+1√
E(un)

N

)
= 0 (21)

JT
2

(
γopt
1 J1 + γopt

2 J2 −
rn+1√
E(un)

N

)
= 0 (22)

1. Generate input data samples in the form of (u, y,G(u)(y)) for the DeepONet.

2. Feed [u(x1), u(x2), · · · , u(xm)]) into the branch network and y ∈ Y into the trunk

network. Denote the output of the DeepONet as q.

3. Update the parameters in the DeepONet by minimizing a cost function, where the cost

function can be taken as the mean squared error as 1
|Y |
∑

y∈Y ∥G(u)(y)− q∥2.
4. Once the DeepONet has been trained well, solve the system of equations to obtain[
∂W1
∂t

; ∂W2
∂t

]
.

5.The value of
[
∂W1
∂t

; ∂W2
∂t

]
can be obtained in the current step. Wn+1

1 and Wn+1
2 for the

next step can be also obtained by the Forward Euler method or Runge-Kutta method.

6. Repeat step 5 until the final time T , where T = t0 + s∆t.

7. Output the solution at time T in the DeepONet with parameters obtained in step 6.

Purdue 2023– 9

Adaptive Strategy

1. Set the tolerance for ξ as ϵ0 and ϵ1, the initial time step ∆t, the maximum time step

∆tmax and the minimum time step ∆tmin

2. Compute un+1.

3. Compute ξn+1 = rn+1
√

En
.

4. If |1− ξn+1| > ϵ0,

Then ∆t = max(∆tmin,∆t/2);

Else if |1− ξn+1| < ϵ1,

Then ∆t = min(∆tmax, 2∆t).

Go to Step 2.

5. Update time step ∆t.

Another popular strategy to keep r approximating the original energy E is to reset the SAV

rn+1 to be En+1 in some scenarios. The specific algorithm is as following:

1. Set the tolerance for ξ as ϵ2.

2. Compute un+1.

3. Compute ξn+1 = rn+1
√

En
.

4. If |1− ξn+1| > ϵ2,

Then rn+1 =
√
En+1 and Go to Step 2.

5. Go to next iteration.

Purdue 2023– 10

Example-1 Parametric Heat Equation

A general parametric heat equation in 1D can be described by

ut = cuxx (23)

u(x, 0) = sin(πx) (24)

u(0, t) = u(2, t) = 0 (25)

Error T = 0.025 T = 0.05 T = 0.075 T = 0.1

c = 1.2 1.30× 10−5 1.43× 10−5 1.35× 10−5 1.20× 10−5

c = 1.5 1.35× 10−5 1.27× 10−5 9.80× 10−6 7.80× 10−6

c = 1.8 1.17× 10−5 1.03× 10−5 7.88× 10−5 1.83× 10−5

c = 2.5 2.20× 10−4 1.34× 10−4 6.02× 10−5 7.08× 10−6

Table 1: The parametric heat equation: The initial condition of the PDE is f(x) = sin (πx).

The error is defined by 1
Nx

∑Nx
k=1(u(xk)− û(xk))

2, where Nx = 51, u is the solution obtained

by EDE-DeepONet and û is the exact solution.

Purdue 2023– 11

Figure 1: The parametric heat equation: The modified energy and original energy when training

the network. Each iteration step represents one forward step of the PDE’s numerical solution

with ∆t = 2.5 × 10−4. This kind of PDEs is more complicated, so it need more restarts in the

training process. The original energy keeps decreasing and the modified energy also shows good

approximation of the original energy.

Purdue 2023– 12

(a) c = 1.2 (b) c = 1.5

(c) c = 1.8 (d) c = 2.5

Figure 2: The parametric heat equation: The solution with 4 different parameters c. The curve

represents the solution obtained by the EDE-DeepONet and xxx represents the reference solution.

The training parameter c is in the range of [1, 2), so we give 3 examples in this range. We also

present the case out of the range in Figure 5-(d).
Purdue 2023– 13

Example-2 Allen-Cahn Equation

1D Allen-Cahn equation with various thickness of the interface:

ut = uxx −
1

ϵ2
(u3 − u) (26)

u(−1, t) = u(1, t) = 0 (27)

The corresponding Ginzburg–Landau free energy E[u] =
∫ 1
0

1
2
|ux|2dx+

∫ x=1
x=0 G(u)dx, where

G(u) = 1
4ϵ2

(u2 − 1)2.

2D Allen-Cahn equation with various initial conditions:

ut = ∆u− g(u) (28)

u(x, y, 0) = asin(πx)sin(πy) (29)

u(−1, y, t) = u(1, y, t) = u(x,−1, t) = u(x, 1, t) = 0 (30)

The corresponding Ginzburg–Landau free energy

E[u] =
∫ 1
−1

∫ 1
−1

1
2
(|ux|2 + |uy |2)dxdy +

∫ 1
−1

∫ 1
−1 G(u)dx, where G(u) = 1

4ϵ2
(u2 − 1)2 and

g(u) = G′(u) = 1
ϵ2

u(u2 − 1). Usually, we take ϵ = 0.1. In the training process, we take

∆t = 2× 10−4. The number of spatial points is 51× 51 and the number of training parameters

a is 20.

Purdue 2023– 14

Figure 3: 1d Allen-Cahn equation: Solutions with different thickness of the interface at the same

final time. The curve represents the solution obtained by EDE-DeepONet. xxx represents the

reference solution.

Purdue 2023– 15

(a) a = 0.2, T = 0 (b) a = 0.2, T = 0.01 (c) a = 0.2, T = 0.02 (d) a = 0.2, T = 0.03

(e) a = 0.2, T = 0 (f) a = 0.2, T = 0.01 (g) a = 0.2, T = 0.02 (h) a = 0.2, T = 0.03

Figure 4: 2D Allen-Cahn equation: (a)-(d) represents the reference solution of the 2D Allen-Cahn

equation with initial condition f(x, y) = 0.3 sin (πx) sin (πy). (e)-(h) is the solution obtained by

the EDE-DeepONet.

Purdue 2023– 16

Example-3 Application to Optimization Problem

Consider the following minimization problem:

min f(x) =

50∑
k=1

x2
2k−1 +

1

100

50∑
k=1

x2
2k, (31)

where x = (x1, x2, · · · , xN).

Figure 5: The loss of the convex function f(x) at different step sizes.

Purdue 2023– 17

Further Applications

• Apply EDE-DeepONet to some more complicated PDEs.

• Develop schemes on complex boundary conditions for EDE-DeepONet.

• Develop the optimization algorithm which is unconditionally energy stable.

Purdue 2023– 18

https://arxiv.org/abs/2306.06281

Reference and Acknowledgments

Reference:

• K Wu, F Huang, J Shen, A new class of higher-order decoupled schemes for the

incompressible Navier-Stokes equations and applications to rotating dynamics, Journal of

Computational Physics, 2022.

• J Shen, Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order

equations using Legendre polynomials, SIAM Journal on Scientific Computing ,1994.

Purdue 2023– 19

J. Zhang, S. Zhang, J. Shen, G. Lin, Energy-Dissipative Evolutionary Deep Operator Neural
Networks
https://arxiv.org/abs/2306.06281

