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Learning with Non-Representative Data

Can you learn about a population from a sample
that only partially represents the population?

New general method – looking for additional applications.

Joint with: Max Autenrieth, David Stenning, and Roberto Trotta
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Non-Representative Data

A General Challenge
Aim: use training set px , yq to predict target set (y from x).
Spectroscopic data more available for bright/near objects.
These object differ systematically from population.

[Image Credit: Izbicki, Lee, Freeman, 2017, AoAS]
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Learning with Non-Representative Data

Covariate Shift:

p trainingpy | xq “ p targetpy | xq but p trainingpxq ‰ p targetpxq

Supernovae classification:
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Does a new drug improve health outcomes?

Causal Inference:
Split subjects: treatment (Z “ 1) and control (Z “ 0) group
What if treatment group differs systematically from control
group, e.g., in terms of x .

ptreatmentpxq
?
“ pcontrolpxq

Randomiziation is the gold standard, not always possible.

Propensity Scores:
Rosenbaum and Rubin (1983) define propensity scores:

epxq “ PrpZ “ 1 | xq.

Demonstrate that epxq is a balancing score:

ptreatmentpx | epxqq “ pcontrolpx | epxqq.
... easy to diagnose in practice!
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StratLearn:1 Improved Learning under Covariate Shift

Propensity scores
Estimate:
êpxq “ Prptarget set | covariatesq

Check: p trainpx | êpxqq “ p targetpx | êpxqq

Given epxq, expected loss of predictor,
f pxq, is same in target & training sets.

StratLearn
Stratify target & training sets on êpxq.
Classify data separately in each strata.

Reduce covariate shift and thus expected
classification/prediction error.

1
Autenrieth, van Dyk, Trotta, and Stenning (2023). Stratified Learning: A General-Purpose Statistical

Method for Improved Learning under Covariate Shift, SADM, to appear
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Supernova classification – updated SPCC:

Data: Updated “Supernova photometric classification
challenge” (SPCC, Kessler et al. 2010)

LC data of 21,319 simulated supernovae of type Ia, Ib, Ic
and II.
Training Set: 1102 spectroscopically confirmed SNe
with known types
Target Set: 20,216 SNe with photometric information
alone

Preprocessing:
Gaussian process fit of LCs (four color bands, g, r , i , z)
combined with diffusion map, plus redshift and a measure
of brightness, to extract 102 covariates
(Revsbech et al., 2018; Richards et al.. 2012)
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Results for Supernova Classification

Random forest classification, cross validation to select
hyperparameter

ROC for StratLearn and several existing weighting methods.
“Biased” ignores Covariate Shift.
With an unbiased training set
AUC = 0.965.

Weighting Methods for Covariate Shift

Reweight training set: ptargetpxq{ptrainingpxq.

uLSIF (Kanamori et al. 2009);

NN: Nearest-Neighbor (Kremer et al. 2015);

IPS: probabilistic classification (Kanamori
et al. 2009);

While effective in this particular case, GP data augmentation is generally not an option in most
covariate shift tasks. Building upon the approach by [66], we show that principled application of
StratLearn makes augmentation dispensable for binary classification of SNIa vs. non-SNIa, using a
random forest classifier as proposed in [66]. For comparison to previously published methods, the
predictive performance is measured by the target prediction AUC.

Data and preprocessing We use data from the updated “Supernova photometric classification
challenge” (SPCC) [44], containing a total of 21,318 simulated SNIa and of other types (Ib, Ic and
II). For each supernova (SN), LCs are given in four color bands, {6, A, 8, I}. The data is divided into a
source (training) set ⇡( of 1102 spectroscopically confirmed SNe with known types and 20,216 SNe
with unknown types (target set ⇡) ). 51% of the source objects are of type Ia, while only 23% are of
type Ia in the target data, a consequence of the strong covariate shift in the data.

We follow the approach in [66], which has been applied to an earlier release of the SPCC data [45]
(discussed in the Supplement), to extract a set of features from the LC data that can be used for
classification. First, a GP with a squared exponential kernel is used to model the LCs. Then, a
diffusion map [67] is applied, resulting in a vector of similarity measures between the LCs that can
be used as predictor variables. We thus obtain 102 predictive covariates, 100 covariates from the
diffusion map, plus redshift (defined in Section 4.4) and a measure of the objects’ brightness [66].
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StratLearn:    AUC = 0.958

Figure 2: Comparison of ROC curves for
SNIa classification using the updated SPCC
data. Here, Biased and uLSIF are identical.

Results: First, we evaluate the impact of covariate
shift on classification by training a random forest clas-
sifier on the source covariates ignoring covariate shift,
resulting in an AUC of 0.902 on the target data (black
ROC curve in Figure 2). Next, we obtain a ‘gold
standard’ benchmark by randomly selecting 1,102
samples from the combined source and target data as
representative source set. Applying the same classi-
fication procedure on this unbiased ‘gold standard’
training data (unavailable in practice), we obtain an
AUC of 0.965 on the 20,216 test samples.

Given the biased source data, StratLearn is imple-
mented as described in Section 3, including all 102
covariates in the logistic propensity score estimation
model. The improved covariate balance within strata
is discussed and illustrated in the Supplement. After
stratification, a random forest classifier is trained and
optimized on source strata ⇡(1 and ⇡(2 separately
to predict samples in target strata ⇡)1 and ⇡)2 . We
used repeated 10-fold cross validation with a large
hyperparameter grid to minimize the empirical risk of (9) within each strata; details appear in the
Supplement. Source strata ⇡( 9 for 9 2 {3, 4, 5} have a small sample size, (13,7,4) respectively. Thus,
the source strata are merged with ⇡(2 to train the random forest to predict ⇡)9 for 9 2 {3, 4, 5}. With
StratLearn, we obtain an AUC of 0.958 on the target data (blue ROC curve in Figure 2), very near the
optimal ‘gold standard’ benchmark.

Figure 2 compares StratLearn to importance sampling methods designed to adjust for covariate shift
(Proposition 2). To perform importance sampling in this example, the bootstrapped samples in the
random forest fit were resampled with probabilities proportional to the estimated importance weights
(details provided in the Supplement). NN and IPS led to the best importance weighted classifier with
an AUC of 0.923 and 0.921, respectively – an improvement over the biased fit, but still substantially
lower than StratLearn. KLIEP failed to fit importance weights in this example and is thus not included
in the results. We also implemented importance weighted cross validation (IWCV) [80], using the
same hyperparameter grid as for StratLearn, and a combination of IWCV and importance sampling,
which both led to lower AUC than the ones reported in Figure 2 (numerical results are presented in
the Supplement).

Previous state-of-the-art approaches obtain an AUC of 0.855 [53] using boosted decision trees, 0.939
[61] using a combined framework of an autoencoder and a convolutional neural network and 0.94
[66], using LC augmentation and target data leakage, all lower than StratLearn.

7
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Photo-z conditional density estimation

Objective:
Conditional density estimation f pz|xq of
redshift given photometric magnitudes.

Significant covariate shift is magnitudes.

Data (following Izbicki et al., 2017):
468k galaxies (Sheldon et al. 2012), spectro-
scopic redshift, 5 photometric magnitudes.

Create non-representative training set.

Add k P t10, 50u i.i.d. Gaussian covariates.

What is the effect of high-dimensional
irrelevant covariates?
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Photo-z – Stress Test:
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StratLearn especially advantageous in presence of high
dimensional covariate space.
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Cosmic Shear Tomography
Weak Gravitational Lensing

Large mass along line of sight creates
distortion/shear in observed image.
Shear Tomography bins galaxies on
photo-z to map 3D distribution of mass.
Resulting estimates of cosmological para-
meters under ΛCMD are inconsistent with those from CMD.
A possible source of bias is binning of galaxies and the
estimated redshift distribution within bins.

We use StratLearn to improve:
Tomographic binning of galaxies
Estimate z-distribution within bins (using hierarchical models)

Joint work with: Benjamin Joachimi and Angus Wright.

Image: TallJimbo, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
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Cosmic Shear Tomography

Confusion matrices for (a) zB and (b) StratLearn:

Reduce bias by 40% compared with best available alternative.
[Within bin mean of z, bias averaged across bins.]
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Studying the Expansion History of Universe2

Type Ia Supernovae had a
common “flashpoint”

Absolute magnitudes:
M Ia

j „ NpM Ia
0 , σ

Ia
intq.

Non-linear Regression: mBj “ gpzj ,ΩΛ,ΩM ,H0q `M Ia
j

[function of density of dark energy and of total matter]

[part of a (second-stage) fully-Bayesian Hierarchical model ‹ ]

For Non Type Ia: M Ia1

j „ DistributionpM Ia1

0 , σIa1

intq with σIa1

int " σIa
int

First Stage Analysis: Classify Supernova into Type Ia, non Type Ia.

2
Shariff, Jiao, Trotta, and van Dyk (2016). BAHAMAS: New SNIa Analysis Reveals Inconsistencies

with Standard Cosmology. The Astrophysical Journal, 827, 1
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Two-Stage Analysis

Let:
Y0 “ data used to classify supernovae
Y1 “ data used to fit cosmological parameters
Z “ classification of supernovae (1 for Type 1a, 0 otherwise)

θ “ cosmological parameters

Pragmatic Bayes: π0pZ , θq “ ppZ | Y0q ppθ | Z ,Y1q

Resample Z ptq
„ ppZ | Y0q.

Sample θptq
„ ppθ | Z ptqY1q.

Fully Bayes: πpZ , θq “ ppZ | Y0,Y1q ppθ | Z ,Y0,Y1q

Y1 improves classification, Z (and thus θ estimate).
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Pragmatic Bayesian – Simulation Study

Frequentist evaluation with 8 repetitions on simulated data
each with 500 SNe (5% contamination).

0 1 2
Contaminated

Pragmatic

Gold Standard
m (total matter)

0 1 2

 (dark energy)
True values
Mean
Mean +/- 1 sd
Mean +/- 2 sd

Pragmatic approach recovers true parameters well, with
slightly increased variance compared to Gold Standard.
Results shown consistent for other parameters.
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For Further Reading I

Autenrieth, M., van Dyk, D. A., Trotta, R., and Stenning, D. C.
Stratified Learning: A General-Purpose Statistical Method for Improved Learning
under Covariate Shift
Statistical Analysis and Data Mining, 2023, 1–16.

Autenrieth, M., Joachimi, B., Stenning, D. C., Trotta, R., van Dyk, D. A., and
Wright, A. H.
Improved Weak Lensing Photometric Redshift Calibration via StratLearn and
Hierarchical Modeling
preprint, 2023+.

Revsbech, E., Trotta, R., and van Dyk, D. A.
STACCATO: A Novel Solution to Supernova Photometric Classification...
Monthly Notices of the Royal Astronomical Society, 473, 3969–3986, 2018.

Shariff, H., Jiao, X., Trotta, R., and van Dyk, D. A.
BAHAMAS: SNIa Analysis Reveals Inconsistencies with Standard Cosmology.
The Astrophysical Journal, 827, 1 (25 pp), 2016.



Learning with Non-representative Data Examples Two-Stage Analysis

Photometric Classification of SNe3

Data:

STACCATO 3
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Figure 1. An example of LC data in four bands for (the randomly
selected) SN194156 at z = 0.54. Vertical 1‡ error bars are also
plotted.

behaviour (in the g band) that some SNe exhibit in one or
more bands and the more ‘well behaved’ peak structure that
is typically associated with SNIa explosions.

The simulated dataset from Kessler et al. (2010a) is di-
vided into a training set, Btrain, of 1,217 SNe with known
types and a test set, Btest, of 16,113 simulated SNe with un-
known types. Btrain is obtained by simulating the spectro-
scopic follow-up e�ciency from a 4m class telescope with a
limiting r-band magnitude of 21.5, and an 8m class telescope
with a limiting i-band magnitude of 23.5. SNIa LCs are sim-
ulated from a mix of SALT-II and MLCS models, while non-
SNIa are simulated from a set of 41 templates derived from
spectroscopically confirmed non-SNIa (Kessler et al. 2010b).
The goal is to use Btest to classify the SN in Btest. Due to
observational selection e�ects, the spectroscopic training set
is biased in terms of SN types, redshift, and brightness. This
bias is mimicked in the dataset of Kessler et al. (2010a) so
that there are proportionally more bright, low redshift SNIa
in Btrain than in Btest.

We also construct an unbiased training set, Utrain, by
random sampling 1,200 SNe from the entire dataset. Here
we exploit the fact that the classes of the entire dataset
was released post challenge. The remaining data is assigned
to a corresponding test set, Utest, used for evaluating the
performance of the classifier. For consistency, the sizes of
Utrain and Btrain are similar. We refer to the Utrain as ‘the
gold standard’, as it is a ‘best case scenario’ to compare any
classification algorithm against. Although, such an unbiased
training set is not feasible in practice, we want to assess the
reduction in the classifier performance that can be attrib-
uted to the bias in Btrain. The composition of both training
and test sets is summarized in Table 1.

2.2 Modelling Light Curves with Gaussian
Processes

Let X(t) be a stochastic process with continuous time in-
dex, t, in some time interval, T . We say X(t) follows a
Gaussian Process (GP) (e.g., Adler 1990), if the finite di-

mensional distribution, p(X(t1), . . . , X(tk)), is (multivari-
ate) Gaussian for any positive integer, k, and any set of
time points t1, . . . , tk in T . Two key theoretical results are
the existence and uniqueness of the Gaussian process. Spe-
cifically, a GP is uniquely determined by its mean function,

µ(t) = E[X(t)] (1)

and its covariance function,

K(t, s) = E
#
{X(t) ≠ µ(t)}T {X(s) ≠ µ(s)}

$
, (2)

where t and s are any two time points in T . Conversely for
any given mean and covariance functions, there exists a GP
with these mean and covariance functions. (For previous ap-
plications of GP regression to SN LC fitting, see Kim et al.
(2013).)

The key result that allows us to use GPs to
model time series such as LCs stems from the condi-
tioning rule for multivariate Gaussian distributions (e.g.,
Rasmussen & Williams 2006). Suppose, for example, that
X follows a multivariate Gaussian distribution with mean
vector m and variance matrix �, i.e., X ≥ N(m,�), and
partition

X =
;
X1
X2

<
, m =

;
m1
m2

<
, and � =

5
�11 �12
�21 �22

6
.

The conditional distribution of X2 given X1 is also a (mul-
tivariate) Gaussian, specifically X2 | X1 ≥ N(mú,�ú) with

mú = E[X2|X1] = m2 + �21�≠1
11 (X1 ≠ m1)

�ú = Var(X2|X1) = �22 ≠ �21�≠1
11 �12.

(3)

Turning to the modeling of LCs, let f(t) denote an un-
observed SN LC continuous in time. Suppose that

f ≥ GP (µ,K), (4)

where GP (µ,K) denotes a GP with mean and covariance
functions µ and K. (Here and elsewhere we suppress the
dependence of f , µ, and K on time.) In practice, we must
specify the functional forms of µ and K, typically in terms of
several unknown parameters. For the moment, we assume µ
and K are given, putting o� discussion of their specification
until Section 2.3.

Because the distribution of f(t) at any finite set of time
points is multivariate Gaussian, given a series of observa-
tions we can simply apply the formulas in (3) to obtain the
conditional distribution of f(t) at any other finite set of
time points given the observed values. In this way, we can
interpolate f(t) between the observed values. Specifically,
if we measure at n points in time a vector of observations
fobs = (f(t1), . . . , f(tn)), we can obtain the conditional dis-
tribution of f(t) at another set of k time points, namely
f̃ = (f(t̃1), . . . , f(t̃k)), by conditioning on the observations,

f̃ | fobs =

Q
ca
f(t̃1)

...
f(t̃k)

R
db

-------

Q
ca
f(t1)

...
f(tn)

R
db ≥ Nk (mú,�ú) , (5)

where mú and �ú are in (3) with m1 = (µ(t1), . . . , µ(tn))T ,
m2 =

!
µ(t̃1), . . . , µ(t̃k)

"T , �11 = K(t, t), �12 = K(t, t̃),
�21 = �T

12, and �22 = K(t̃, t̃), where K(t, t̃) is a matrix
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Figure 1. An example of LC data in four bands for (the randomly
selected) SN194156 at z = 0.54. Vertical 1‡ error bars are also
plotted.

behaviour (in the g band) that some SNe exhibit in one or
more bands and the more ‘well behaved’ peak structure that
is typically associated with SNIa explosions.

The simulated dataset from Kessler et al. (2010a) is di-
vided into a training set, Btrain, of 1,217 SNe with known
types and a test set, Btest, of 16,113 simulated SNe with un-
known types. Btrain is obtained by simulating the spectro-
scopic follow-up e�ciency from a 4m class telescope with a
limiting r-band magnitude of 21.5, and an 8m class telescope
with a limiting i-band magnitude of 23.5. SNIa LCs are sim-
ulated from a mix of SALT-II and MLCS models, while non-
SNIa are simulated from a set of 41 templates derived from
spectroscopically confirmed non-SNIa (Kessler et al. 2010b).
The goal is to use Btest to classify the SN in Btest. Due to
observational selection e�ects, the spectroscopic training set
is biased in terms of SN types, redshift, and brightness. This
bias is mimicked in the dataset of Kessler et al. (2010a) so
that there are proportionally more bright, low redshift SNIa
in Btrain than in Btest.

We also construct an unbiased training set, Utrain, by
random sampling 1,200 SNe from the entire dataset. Here
we exploit the fact that the classes of the entire dataset
was released post challenge. The remaining data is assigned
to a corresponding test set, Utest, used for evaluating the
performance of the classifier. For consistency, the sizes of
Utrain and Btrain are similar. We refer to the Utrain as ‘the
gold standard’, as it is a ‘best case scenario’ to compare any
classification algorithm against. Although, such an unbiased
training set is not feasible in practice, we want to assess the
reduction in the classifier performance that can be attrib-
uted to the bias in Btrain. The composition of both training
and test sets is summarized in Table 1.

2.2 Modelling Light Curves with Gaussian
Processes

Let X(t) be a stochastic process with continuous time in-
dex, t, in some time interval, T . We say X(t) follows a
Gaussian Process (GP) (e.g., Adler 1990), if the finite di-

mensional distribution, p(X(t1), . . . , X(tk)), is (multivari-
ate) Gaussian for any positive integer, k, and any set of
time points t1, . . . , tk in T . Two key theoretical results are
the existence and uniqueness of the Gaussian process. Spe-
cifically, a GP is uniquely determined by its mean function,

µ(t) = E[X(t)] (1)

and its covariance function,

K(t, s) = E
#
{X(t) ≠ µ(t)}T {X(s) ≠ µ(s)}

$
, (2)

where t and s are any two time points in T . Conversely for
any given mean and covariance functions, there exists a GP
with these mean and covariance functions. (For previous ap-
plications of GP regression to SN LC fitting, see Kim et al.
(2013).)

The key result that allows us to use GPs to
model time series such as LCs stems from the condi-
tioning rule for multivariate Gaussian distributions (e.g.,
Rasmussen & Williams 2006). Suppose, for example, that
X follows a multivariate Gaussian distribution with mean
vector m and variance matrix �, i.e., X ≥ N(m,�), and
partition

X =
;
X1
X2

<
, m =

;
m1
m2

<
, and � =

5
�11 �12
�21 �22

6
.

The conditional distribution of X2 given X1 is also a (mul-
tivariate) Gaussian, specifically X2 | X1 ≥ N(mú,�ú) with

mú = E[X2|X1] = m2 + �21�≠1
11 (X1 ≠ m1)

�ú = Var(X2|X1) = �22 ≠ �21�≠1
11 �12.

(3)

Turning to the modeling of LCs, let f(t) denote an un-
observed SN LC continuous in time. Suppose that

f ≥ GP (µ,K), (4)

where GP (µ,K) denotes a GP with mean and covariance
functions µ and K. (Here and elsewhere we suppress the
dependence of f , µ, and K on time.) In practice, we must
specify the functional forms of µ and K, typically in terms of
several unknown parameters. For the moment, we assume µ
and K are given, putting o� discussion of their specification
until Section 2.3.

Because the distribution of f(t) at any finite set of time
points is multivariate Gaussian, given a series of observa-
tions we can simply apply the formulas in (3) to obtain the
conditional distribution of f(t) at any other finite set of
time points given the observed values. In this way, we can
interpolate f(t) between the observed values. Specifically,
if we measure at n points in time a vector of observations
fobs = (f(t1), . . . , f(tn)), we can obtain the conditional dis-
tribution of f(t) at another set of k time points, namely
f̃ = (f(t̃1), . . . , f(t̃k)), by conditioning on the observations,

f̃ | fobs =

Q
ca
f(t̃1)

...
f(t̃k)

R
db

-------

Q
ca
f(t1)

...
f(tn)

R
db ≥ Nk (mú,�ú) , (5)

where mú and �ú are in (3) with m1 = (µ(t1), . . . , µ(tn))T ,
m2 =

!
µ(t̃1), . . . , µ(t̃k)

"T , �11 = K(t, t), �12 = K(t, t̃),
�21 = �T

12, and �22 = K(t̃, t̃), where K(t, t̃) is a matrix
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E.g., Supernova photometric classification challenges, such as Kessler (2010).
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