BIRS Astrostatistics : 2023 Nov 01

Modeling Multi-Dimensional Astronomical Data

VINAY KASHYAP

CHASC AstroStatistics Center Center for Astrophysics | Harvard & Smithsonian

Highlights from CHASC

https://hea-www.harvard.edu/AstroStat/

- * The CHASC AstroStatistics Collaboration has been operating since c.1997
- Started as a collaboration between astrophysicists at the Center for Astrophysics and statisticians at Harvard to handle challenges of highquality data anticipated from the Chandra X-ray Observatory
- * Has now expanded to involve astrophysicists from CfA, MIT, Crete, Cambridge, IUCAA, GSFC, and statisticians from Harvard, Imperial, UC Davis, Michigan, Penn State, Simon Fraser, Columbia, Williams College
- Responsible for ≈40 PhD theses, ≥10 Masters theses

Astronomical Data are Multi-dimensional

- * For several years now, we at CHASC have been developing algorithms to analyze multi-dimensional data focused on "lists of events" photons, sunspots, flares, collections of fluxes, etc.
- * I will give a broad overview of some of the highlights; ask David van Dyk, Aneta Siemiginowska, David Stenning, Yang Chen, or Max Autenrieth for details

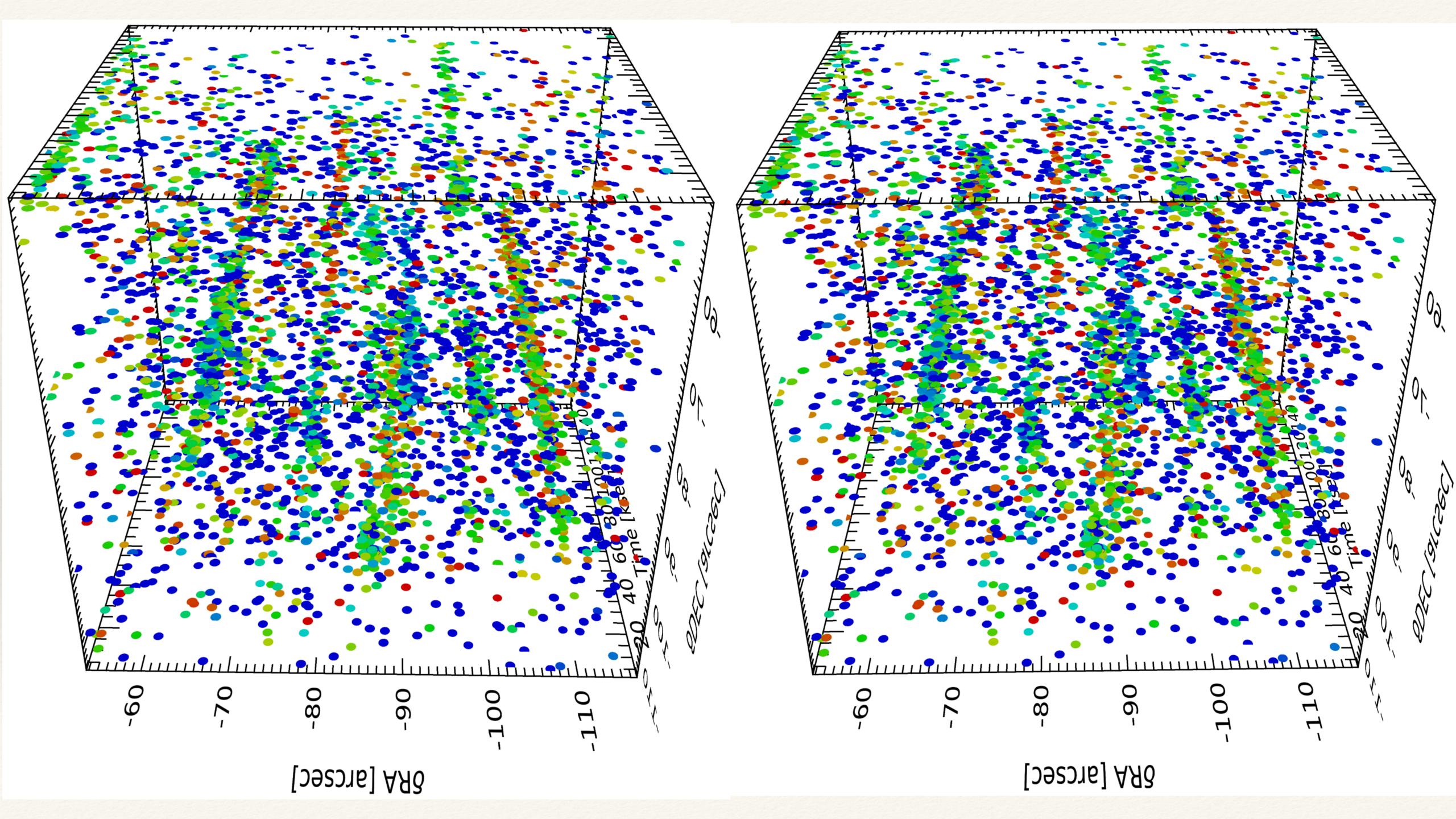
High-Energy Astro: marked Poisson process

- * High-energy data are 4-way tables of photons, with spatial, spectral, and temporal marks associated with each photon: {x, y, t, E}
- {x, y, t, E} are projected onto a smaller set of axes, and 1-D or 2-D histograms are used to extract sources or variability events or spectral features

*
$$\{x,y\} \rightarrow$$
 counts image I_{ij}

* $\{t\} \rightarrow \text{light curve } l_k$

- * $\{E\} \rightarrow$ energy or wavelength spectrum s_p
- combinations are also interesting
 - * $\{x, y, t\} \rightarrow$ spatio-temporal variations
 - * $\{x, y, E\} \rightarrow$ spatio-spectral variations
 - * $\{t, E\}$ \rightarrow spectral variability
 - * $\{x, y, t, E\}$ \rightarrow everything everywhere all at once



David van Dyk, Aneta Siemiginowska, David Stenning, Yang Chen, Max Autenrieth

0-D

Application

Non detections/upper limits

balance of smooth

Spectral hardness (BEHR)

hierarchical

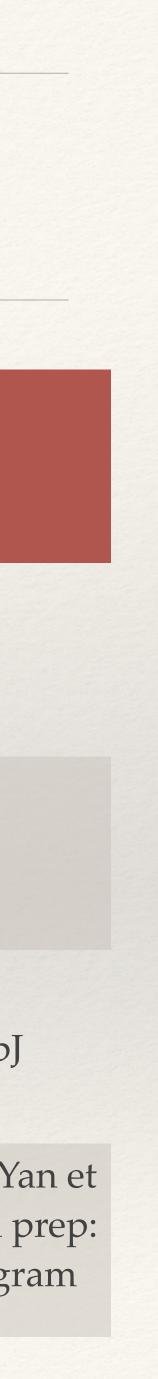
Modeling low-counts spectra, narrow lines in low-res spectra (BLoCXS)

MCMC with r

Collections (logN-logS, luminosity data augmentat functions, power-law distributions, sunspot of Spacings, mul numbers, flare distributions, time delays) CARMA, (

-	
	1

Analysis	Reference
Type I and Type II, h tests and LRT	Kashyap et al. 2010 ApJ, Zhang et al. 2023 MNRAS
l Bayesian modeling	Park et al. 2006 ApJ
multimodal posteriors	van Dyk et al. 2001 ApJ, Park et al. 2008 ApJ
tion, Maximum Product Ilti-stage Bayesian, O-U/ Gaussian Processes	Yu et al. 2012 SolPhys, Tak et al. 2017 ApJ, Ya al. 2021 RNAAS, Meyers et al. 2023; and in Autenrieth et al., Wang et al., Yan et al., Ingre et al.



David van Dyk, Aneta Siemiginowska, David Stenning, Yang Chen, Max Autenrieth

1 1/2 D and 2-D

Application

Incorporate calibration uncertainty in Pragmatic and spectral modeling

Image deconvolution with error barsMultiscale hieran(LIRA, jolideco)upper bounds, Is

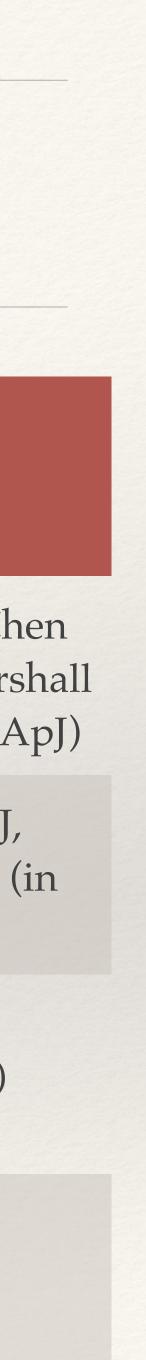
(Spatial) segmentation and boundaries in event lists (SRGonG, BFD-SRGonG)

Graphed see

Spectro-temporal change points (Automark)

Minimum

Analysis	Reference
l Fully Bayes, shrinkage estimation	Lee et al. 2011 ApJ, Xu et al. 2014 ApJ, Ch et al. 2018 AoAS, Yu et al. 2018 ApJ, Mars et al. 2021 AJ, Yu et al., 2023 (submitted A
rchical Bayesian, p-value Ising, Genetic algorithms	Esch et al. 2004 ApJ, Stein et al. 2015 ApJ, McKeough et al. (in prep), Donath et al. (prep)
eded region growing	Fan et al. 2023 ApJ, Wang et al. (in prep)
n descriptor lengths	Wong et al. 2016 AoAS



David van Dyk, Aneta Siemiginowska, David Stenning, Yang Chen, Max Autenrieth

3-D and 4-D

Application

spatio-spectral disambiguation of overlapping sources (BASCS)

Bayesian mixtures and Reversible Jump MCMC

spatio-spectro-temporal
disambiguation of overlapping
sources (EBASCS)

spatio-spectro-temporal change points in multi-filter data cubes (4D Automark)

Seeded region growing and minium descriptor lengths Xu et al. 2022 AJ

Analysis

Reference

Jones et al. 2015 ApJ

Bayesian mixtures

Meyer et al. 2021 MNRAS

Non detections/upper limits

Spectral hardness (BEHR)

Narrow lines in low-res spectra (BLoCXS)

Collections (logN-logS, luminosity functions, power-law distributions, sunspot numbers, flare distributions, time delays)

Incorporate calibration uncertainty in spectral modeling

Image deconvolution with error bars (LIRA, jolideco)

(Spatial) segmentation and boundaries in event lists (SRGonG, BFD-SRGonG)

Spectro-temporal change points (Automark)

spatio-spectral disambiguation of overlapping sources (BASCS)

spatio-spectro-temporal disambiguation of overlapping sources (EBASCS)

spatio-spectro-temporal change points in multi-filter data cubes (4D Automark)

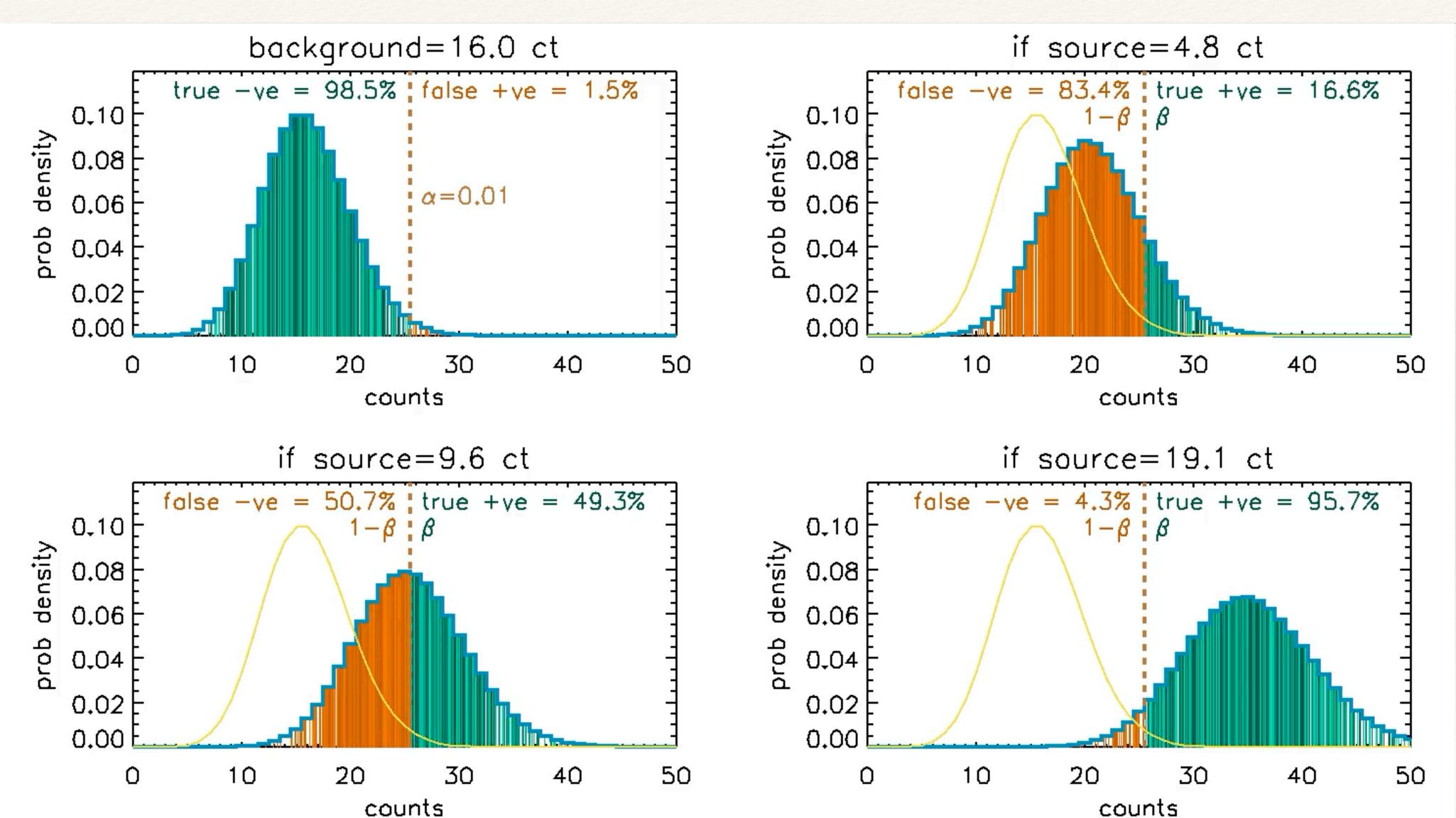
balance of Type I and Type II, smooth tests
hierarchical Bayesian modeling
MCMC with multimodal posteriors
data augmentation, Maximum Product of Spacings, multi- stage Bayesian, O-U/CARMA, Gaussian Processes
Pragmatic and Fully Bayes, shrinkage estimation
Multiscale hierarchical Bayesian, p-value upper bounds, Ising Genetic algorithms
Graphed seeded region growing
Minimum descriptor lengths
Bayesian mixtures and Reversible Jump MCMC

Bayesian mixtures

Seeded region growing and minium descriptor lengths

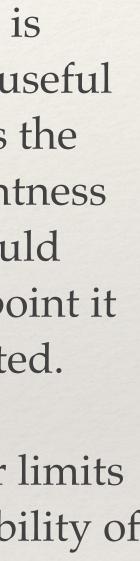
Kashyap et al. 2010, ApJ 719, 900

"OD": flux upper limits to undetected sources

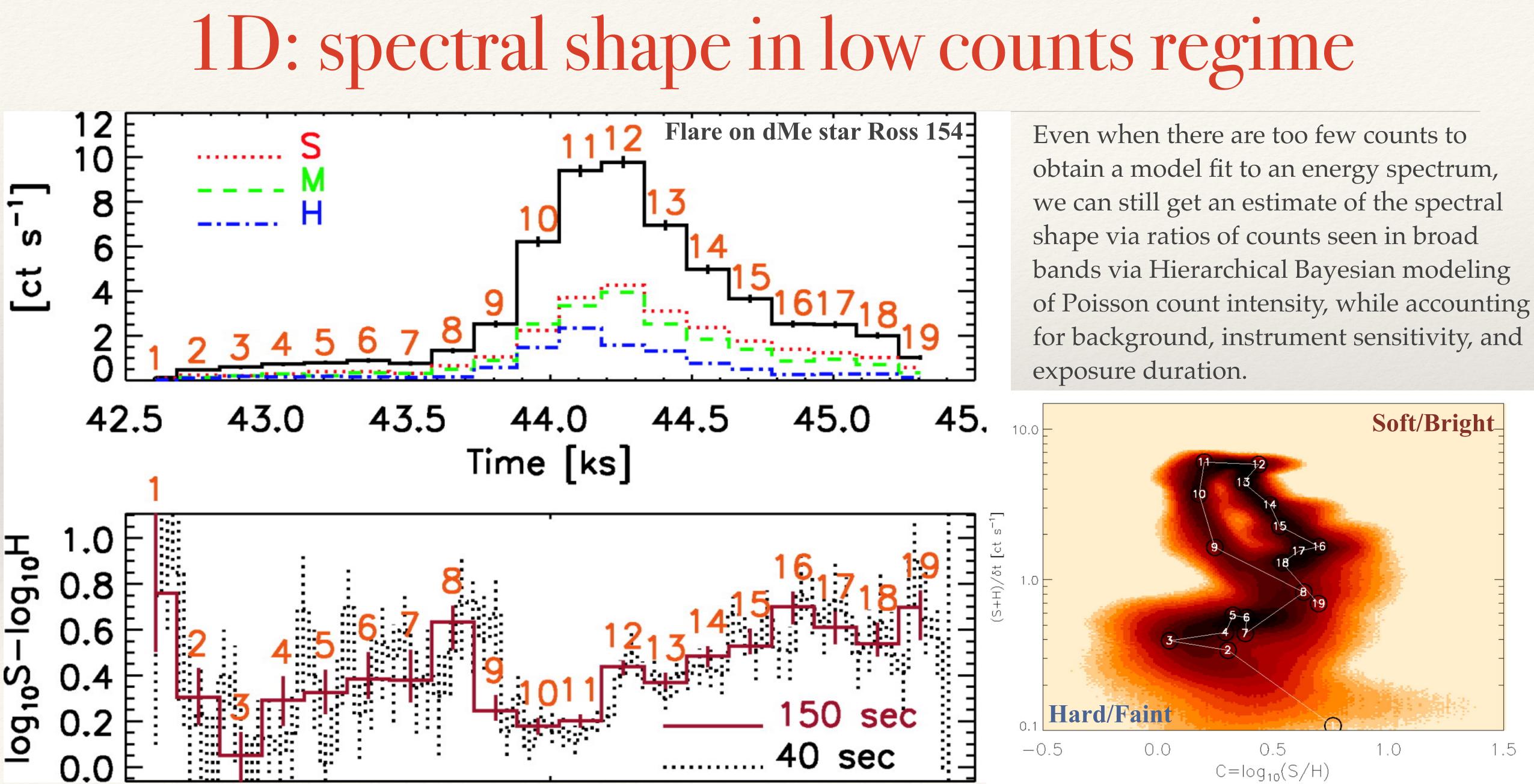


When no signal is detectable, it is useful to know what is the maximum brightness that a source could have at which point it would be detected.

Compute upper limits based on probability of false –ves for a given acceptable false +ve threshold.



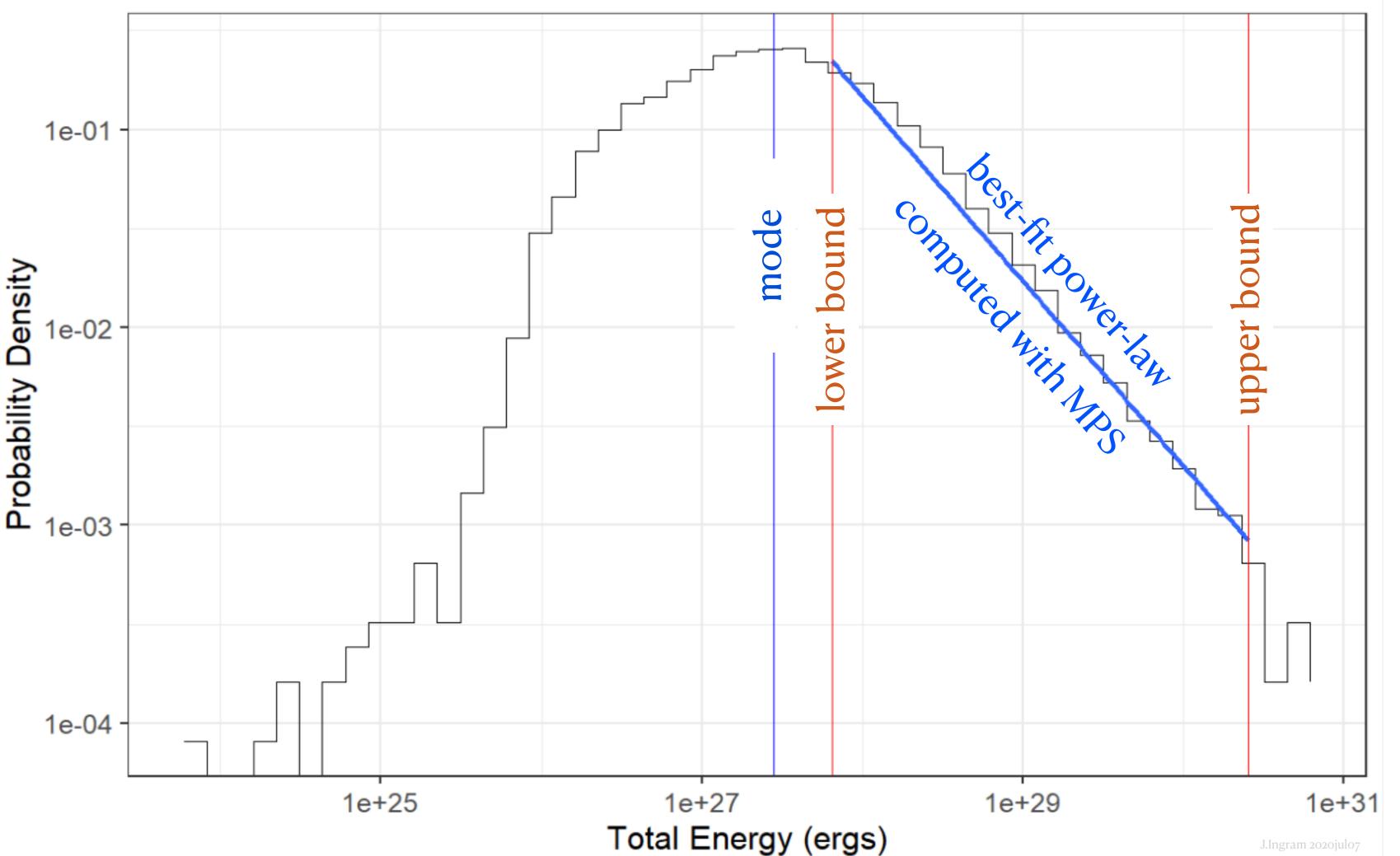
Park et al. 2006, ApJ 652, 610



Wang, Meng, Ingram, Kashyap, Klingenberg (in prep)

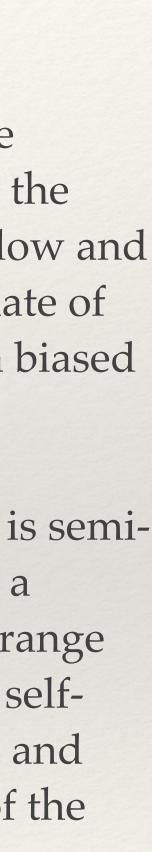
1D: extent of a power-law distribution

Distribution of Total Energy



Solar flare energies appear to be distributed as a power-law, but the distribution turns over at both low and high energies. So a naive estimate of the power-law slope will give a biased estimate.

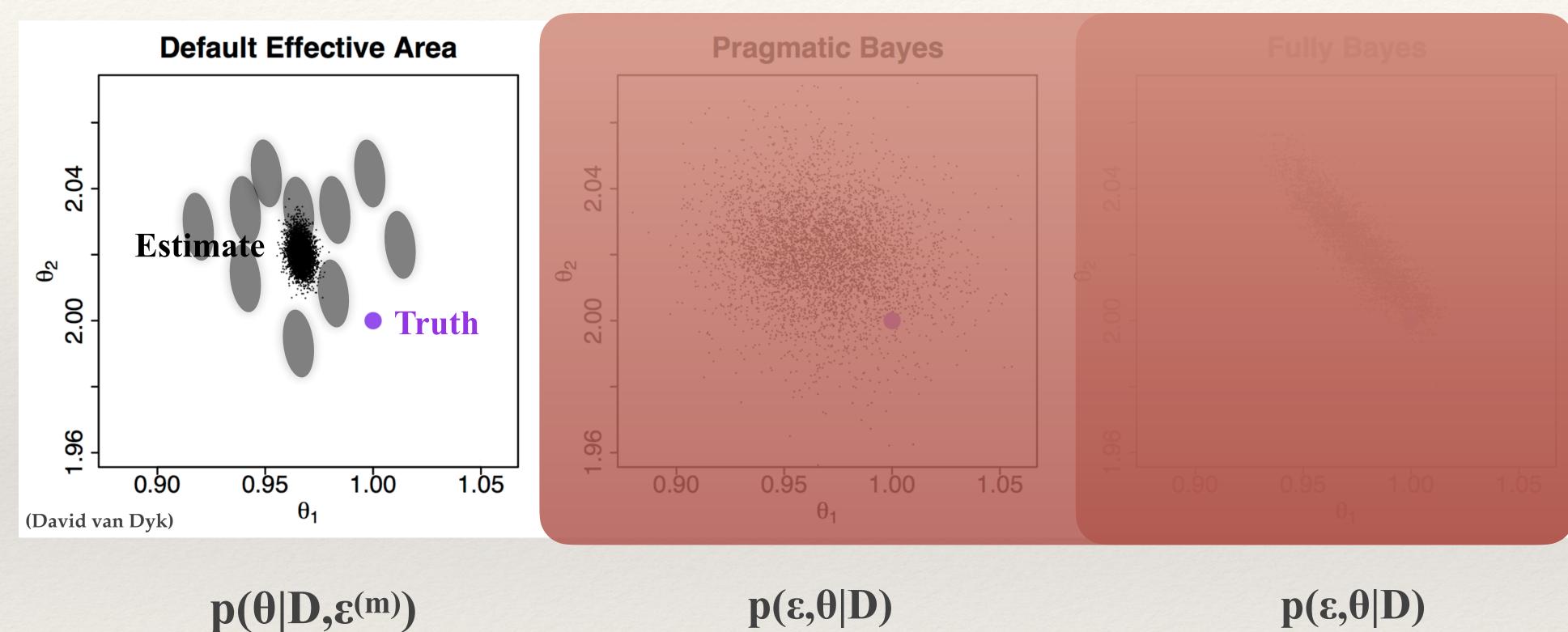
Maximum Product of Spacings is semiparametric a technique that fits a power-law model over a small range but ignores the rest. So we can selfconsistently estimate the upper and lower bounds of applicability of the power-law.



Lee et al. 2011 ApJ 731, 126; Xu et al. 2014 ApJ 794, 97; Yu et al. 2018, ApJ 866, 146; Yu et al. 2023, in prep

 $p(\theta|D,\epsilon^{(def)})$

1D: incorporating systematic uncertainty



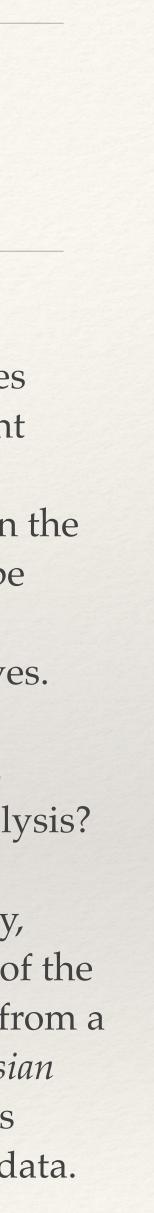
 $\rightarrow p(\theta|D,\epsilon) \cdot p(\epsilon)$

$\rightarrow p(\theta|D,\epsilon) \cdot p(\epsilon|D)$

Spectral analysis requires knowledge of instrument sensitivity, which is empirically measured on the ground prior to telescope launch. It is not known perfectly, and also evolves.

How to incorporate this uncertainty into the analysis?

A pragmatic Bayesian way, where different choices of the sensitivity are sampled from a prior, and the *fully Bayesian* way where everything is estimated based on the data.



2D: segmentation of event lists



Using graphed Seeded Region Growing, we can define boundaries of diffuse regions and find segmentations without manual supervision.

Start with an oversampling of seeds, aggregate Voronoi cells into clusters based on similarity of surface brightness, and merge segments into an optimum number of ROIs via BIC

0.024

0.071

0.17

0.36

0.74

1.5

3

6

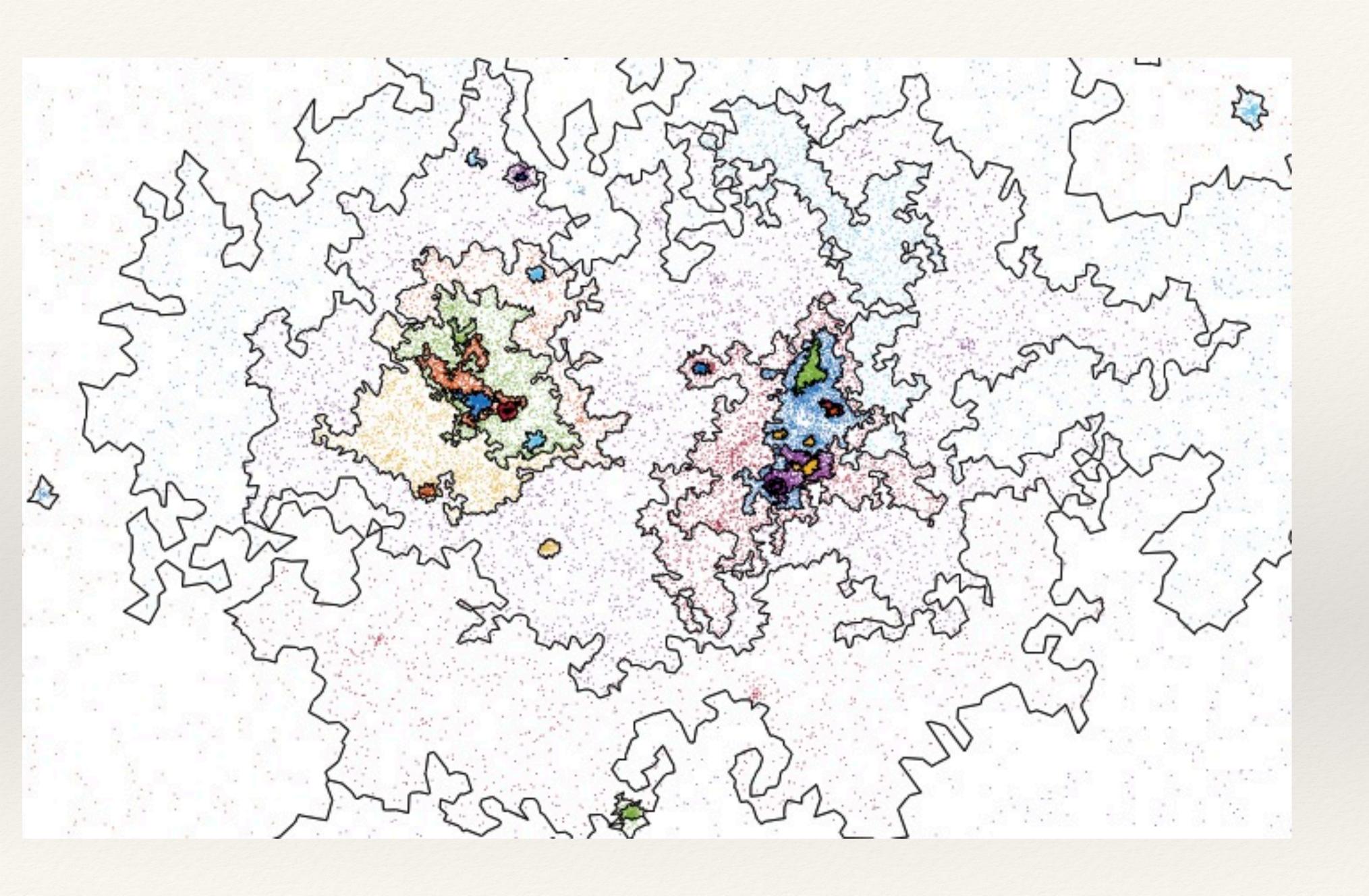
12

24

Vinay Kashyap : iid2022 : 2022-Nov-16

SRGonG

Chandra X-ray image of interacting starburst galaxies Arp 299

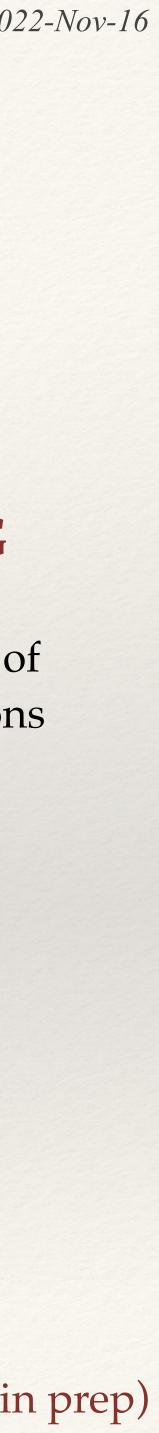


Vinay Kashyap : iid2022 : 2022-Nov-16

SRGonG

segmentation of *Arp 299* photons

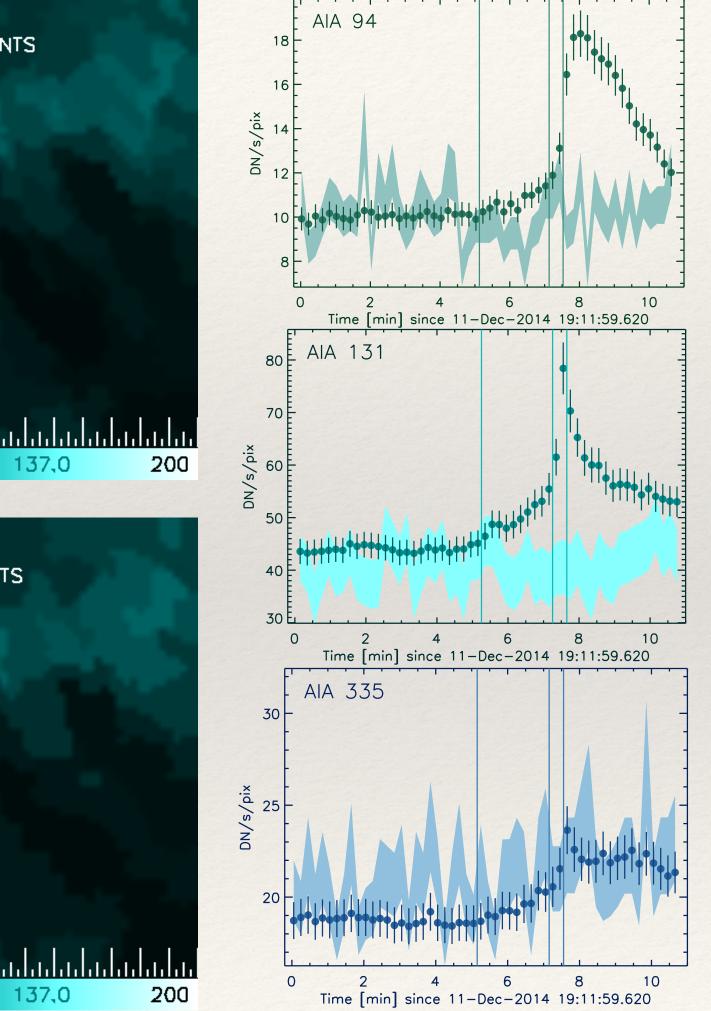
Fan et al. 2023, AJ 165, 66; Wang et al. (in prep)



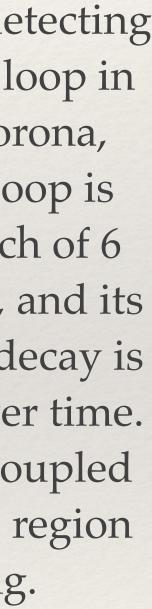
Wong et al. 2016, AoAS 10(2), 1107; Xu et al. 2021, AJ 161, 184

4D: change points in time across filter images

SDO/AIA 94	SDO/AIA 335	SDO/AIA 131
(2) [26-35] 103 SEGMENTS	(2) [26:35] 103 SEGMENTS	(2) [26:35] 103 SEGMEN
ունունունունունունունունուն		
0 9,9 19,8	30 5 15.8 26,7	38 15 75,9
SDO/AIA 94	SDO/AIA 335	SDO/AIA 131
SDO/AIA 94 (3) [36-37] 57 SEGMENTS	SDO/AIA 335 (3) [36:37] 57 SEGMENTS	SDO/AIA 131 (3) [36:37] 57 SEGMENT

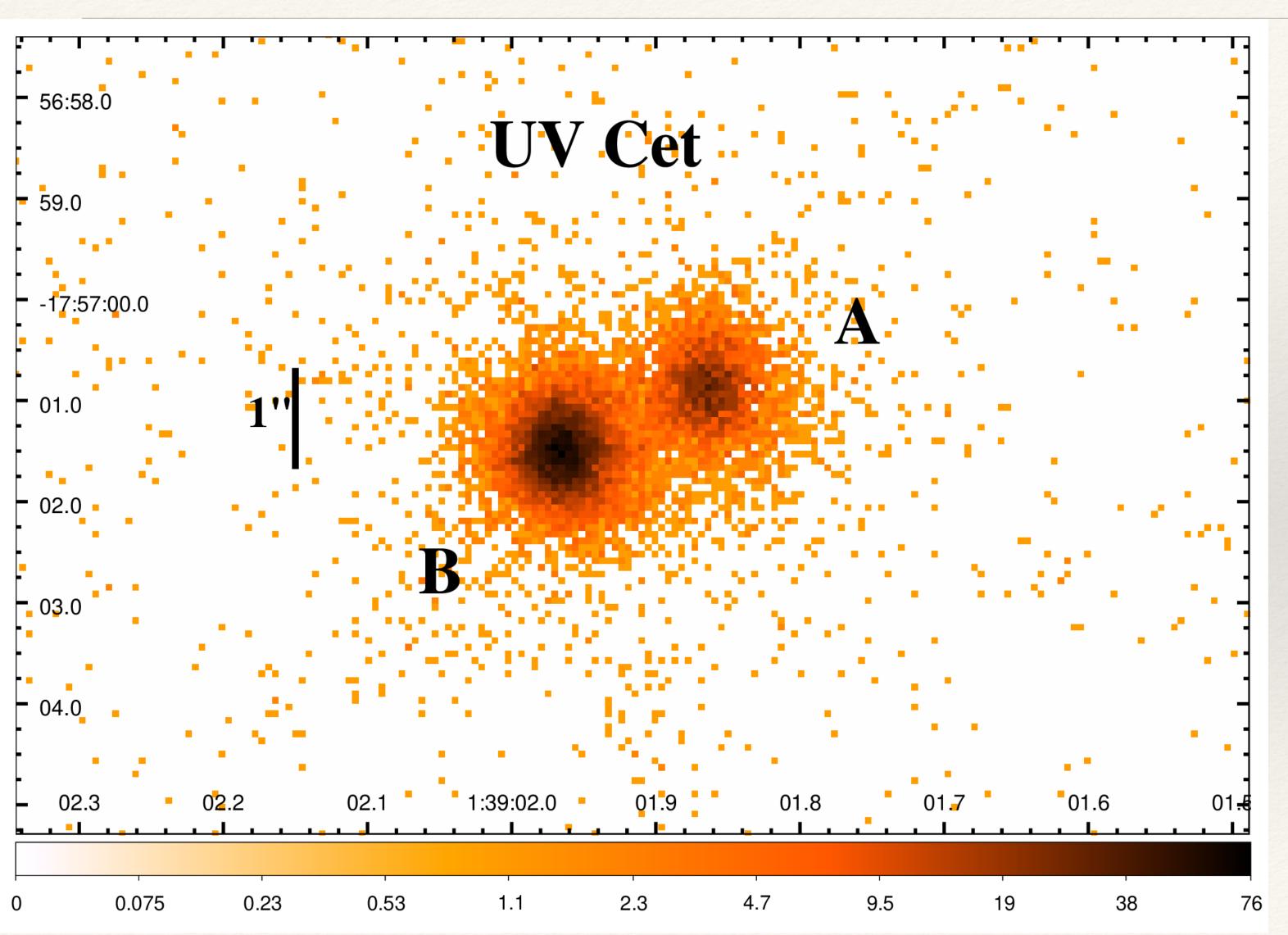


Example of detecting an evolving loop in the solar corona, where the loop is found in each of 6 filter images, and its growth and decay is identified over time. Uses MDL coupled with seeded region growing.



Jones et al. 2015, ApJ 808, 137; Meyer et al. 2021, MNRAS 506, 6160

4D: disambiguation of overlapping photons



Probabilistically assign photons to one of several overlapping point sources by leveraging their spatial, spectral, and temporal patterns

 $\{x, y, E\}$ — BASCS (Jones et al. 2015) $\{x, y, t, E\}$ — EBASCS (Meyer et al. 2021)

Finite Mixture model where each event is assumed to arise from one of several sources with the mixture weights representing proportion of photons from that source.

Each event is assigned a probability of belonging to each source and sifted, and the the sources are probabilistically separated.

Jones et al. 2015, ApJ 808, 137; Meyer et al. 2021, MNRAS 506, 6160

4D: disambiguation of overlapping photons

