Resurgence of the cross-disciplinary field Astrostatistics

G. Jogesh Babu The Pennsylvania State University

Department of Statistics and Department of Astronomy & Astrophysics

Astronomy & Statistics: A glorious past

For most of western history, the astronomers were the statisticians!

Ancient Greeks to 18th century

Best estimate of the length of a year from discrepant data?

- Middle of range: Hipparcos (4th century B.C.)
- Observe only once! (medieval)
- Mean: Brahe (16th c), Galileo (17th c), Simpson (18th c)
- Median w/ bootstrap (21th c)

19th century

Discrepant observations of planets/moons/comets used to estimate orbital parameters using Newtonian celestial mechanics

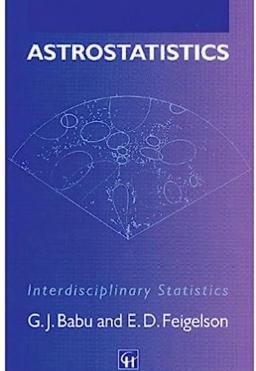
- Legendre, Laplace & Gauss develop least-squares regression and normal error theory (~1800-1820)
- Prominent astronomers contribute to least-squares theory (~1850-1900)

The lost century of statistics in astronomy....

- In the late-19th and 20th centuries, statistics moved towards human sciences (demography, economics, psychology, medicine, politics) and industrial applications (agriculture, mining, manufacturing).
- During this time, astronomy recognized the power of modern physics: electromagnetism, thermodynamics, quantum mechanics, relativity. Astronomy & physics were wedded into astrophysics.
- Thus, astronomers and statisticians substantially broke contact; e.g., the curriculum of astronomers heavily involved physics but little statistics.

Statistical Problems in Astronomy

Surprising variety of statistical problems in astronomical research:


- Huge datasets of images, spectra & time series of planets, stars, galaxies, quasars, supernovae, etc.
- Various properties of cosmic populations observed and empirically studied with all kinds of telescopes (n>>p)
- Properties are measured repeatedly but often with irregular spacing.
- Spatial distributions in sky (2D), space (3D), and parameter space (pD) are complex (MVN assumption usually inapplicable)
- Time Series

Papers in astronomical literature tripled to ~1300/yr in past decade ("Methods: statistical" or "machine learning" papers in NASA-Smithsonian Astrophysics Data System)

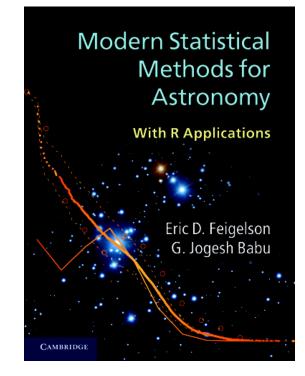
Statistical Challenges in Modern Astronomy: Cross-disciplinary conferences

SCMA VI, CMU 2016 SCMA VII, PSU / Virtual 2021 SCMA VIII, PSU 2023

Astronomer Eric Feigelson and I started collaborating in late 1980s.

The term *Astrostatistics* was coined in mid 1990s, when we published a book by the same name.

- The Center for Astrostatistics was created at Penn State in 2003 to facilitate development and promulgation of statistical expertise for astronomy and astrophysics.
- The activities of the Center are multi-faceted:
 - Promote research on forefront problems
 - Provide forums where active astrostatistical researchers can interact
 - Foster new cross-disciplinary collaborations
 - Liaise with other organizations oriented towards statistical applications in physical sciences.


Under-utilized methodology:

- modeling (MLE, EM Algorithm, BIC, bootstrap)
- multivariate classification (LDA, SVM, CART, RFs)
- time series (autoregressive models, state space models)
- spatial point processes (Ripley's K, kriging)
- nondetections (survival analysis)
- image analysis (computer vision methods, False Detection Rate)
- statistical computing (R)

Advertisement ...

Modern Statistical Methods for Astronomy with R Applications

E. D. Feigelson & G. J. Babu, Cambridge Univ Press, 2012

Winner 2012 PROSE Award for Best Astronomy & Cosmology Book

Growing field

- Short training courses (Penn State, India, Brazil, Greece, China, Italy, France, Germany, Spain, Sweden, Chile, Netherlands, Thailand, Indonesia, Japan, Taiwan)
- IAU/AAS/CASCA/... meetings
- Cross-disciplinary research collaborations:
 - Harvard/ICHASC
 - Carnegie-Mellon
 - Penn State
 - NASA-Ames/Stanford
 - CEA-Saclay/Stanford
 - Cornell
 - Imperial College London
 - Swinburne/Melbourne
 - Univ Tokyo/NAOJ
 - Univ Toronto
 - Simon Fraser...

A new imperative: Large-scale surveys & megadatasets

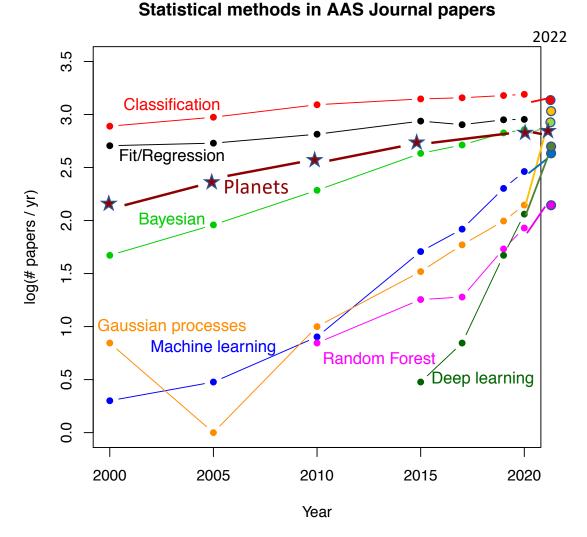
- Huge imaging, spectroscopic & multivariate datasets are emerging from specialized survey projects & telescopes:
 - 10⁹⁻¹⁰-object photometric catalogs x 10⁰-10³ epochs from 2MASS, SDSS, VISTA, CRTS, Pan-STARRS, DES, LSST ...
 - 10⁶⁻⁸- galaxy redshift catalogs from SDSS, LAMOST, ...
 - Spectral-image datacubes (VLA, ALMA, IFUs)
 - Radio interferometer data streams (e.g., 30 Tflops processor for LOFAR)
- The Virtual Observatory is an international effort to federate many distributed on-line astronomical databases.

Powerful statistical tools are needed to derive scientific insights from TBy-PBy-EBy databases

Broad Timeline of Astrostatistics

- LyndenBell Woodroofe estimator (1971)
- Lomb--Scargle periodogram (1982)
- Statistical Challenges in Modern Astronomy (1991)
- Astrostatistics (1996)
- ADA meetings started (2001)
- First Astrostatistics Program at SAMSI (2006)
- International Astrostatistics Association (2010)
- Modern Statistical Methods for Astronomy with R Applications (2012)
- IAU, AAS, ASA, IEEE, ASAIP (2012--5)
- ISI- Astrostatistics Special Interest Group (2017)

Astrostatistics at SAMSI


- Several long-term research programs on Astrostatistics were organized at SAMSI since 2006.
- These programs brought together many statisticians, astronomers, physicists, and computer scientists for fruitful collaborations.
- The programs also launched careers of many scientists.
- The first SAMSI Astrostatistics Program (Spring 2006), focused on: Bayesian statistics, Exoplanets, Particle physics.

- Astrostatistics sub-program (Fall 2012) of *Statistical and Computational Methodology for Massive Datasets*, focused on: The search for transients, Sparsity, Discovery & Classification in Synoptic Surveys, Inference & Simulation in Complex Models, Graphical Models & Graphics Processors.
- Exoplanets: Modern Statistical and Computational Methods for Analysis of Kepler Data. June 10-28, 2013.
- Statistical, Mathematical and Computational Methods for Astronomy 2016-2017. It focused on: Time Domain Astronomy (TDA), Exoplanet data analysis, hierarchical modeling, Uncertainty, selection effects for gravitational waves (GW), Pulsar timing arrays and detection of GWs.
 - The program was timely. The first GW (*GW150914*) detected (100 years after Einstein's prediction) by Laser Interferometer Gravitational-Wave Observatory (LIGO) confirmed Einstein's 1915 general theory of relativity.
 - Time Series Analysis for Synoptic Surveys and Gravitational Wave Astronomy (March 20-23, 2017) held at (and in collaboration with) the International Center for Theoretical Sciences, Bangaluru, India.

Recent resurgence in Astrostatistics

Machine Learning is rising much faster than Exoplanets or any other major topical (stars, galaxies, etc) field in astronomy.

High usage of Bayesian modeling in astronomy/astrophyics, probably more than other fields. Often complex hierarchical models.

Astrostatistics: Future

Improving statistical practice across the astronomical community

- Some of the most important scientific problems in astronomy & astrophysics raise challenging problems in statistical methodology & computational issues: exoplanets, gravitational waves, NanoGrav, cosmology
- The largest telescope projects produce enormous imaging, time series and tabular datasets requiring sophisticated methods
- Tremendous need for continued progress driven by both 'data analysis' (Big Data) and `science analysis' (complex modeling)
- Considerable progress in astronomers' usage of modern sophisticated statistical methods ... but inadequately promulgated to the full community
- Considerable progress among astrostatisticians in developing innovative methods for challenging problems, but involvement by more statisticians is needed.