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Copulas and Conditional Copulas

Copulas

▶ A copula is a function that joins multivariate distribution functions
to their 1-dimensional marginals.

▶ (Sklar’s Theorem - bivariate case) Let H be a joint distribution
function with continuous margins F and G . Then there exists a
unique copula C s.t. for all Y1, Y2 ∈ R

H(Y1, Y2) = C(F1(Y1), F2(Y2))

▶ The copula C binds the marginals into the joint dist’n.
▶ It characterizes the dependence structure in the model.
▶ The copula C : [0, 1] × [0, 1] → [0, 1] itself is a bivariate distribution
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Copula models

▶ A copula model involves:
▶ Specifying marginal distributions for Y1 and Y2, say F1(Y1|η) and

F2(Y2|ζ)

▶ Specifying a (parametric) copula distribution Cθ

▶ Estimation can be done in two stages (propagation of errors)
▶ First estimate the marginals F1(Y |η̂) and F2(Y |ζ̂)

▶ Second fit copula Cθ̂ to U1 = F1(Y1|η̂) and U2 = F2(Y2|ζ̂)

▶ Bayesian estimation in one stage!

Radu Craiu Statistical models for and with copulas 2



Copulas and Conditional Copulas

Copulas: What for?

▶ Flexible modelling that goes beyond multivariate Gaussianity

▶ Scientific interest in understanding dependence structure

▶ Prediction of Y1 from Y2, Y3, . . .

▶ Imputation of missing data

▶ Study of extremes (tail dependence, extreme value theory, etc)

▶ A technique for data fusion
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Conditional Copulas
Example It is known that there is a dependence between blood pressure
(BP) and body mass index (BMI). What if dependence varies with
subject’s age? Can we still use copulas to model this dependence?
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The Model

▶ Consider a random sample {xi , y1i , y2i}1≤i≤n and suppose F1|η(X)
and F2|ζ(X) are the conditional marginal distributions.

▶ The conditional copula (CC) model links the conditional joint and
the conditional marginal distributions

H(Y1, Y2|X ) ∼ C(F1|η(X)(Y1|X ), F2|ζ(X)(Y2|X )|θ(X )),

and η(X ), ζ(X ), θ(X ) ∈ Rp are of interest.
▶ The CC model can be estimated non-parametrically,

semi-parametrically (marginals are parametric, θ(X ) is NP),
Bayesian spline model, additive models, or GP with a SIM twist
(θ(X ) = f (βT X )).
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Hmm.. that’s ”funny”!
▶ Yi |x ∼ N(fi(x), σi) x ∈ R2

▶ True marginal means:
▶ f1(x) = 0.6 sin(5x1) − 0.9 sin(2x2)
▶ f2(x) = 0.6 sin(3x1 + 5x2)
▶ σ1 = σ2 = 0.2, X1 ⊥ X2.

▶ Copula: τ(x) = 0.71

▶ Suppose x2 is not observed so inference is based only on x1
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Hidden Markov Models: A Primer

▶ A hidden Markov model (HMM) pairs an observed time series
{Yt}t≥1 ⊆ Rd with a latent Markov chain {Xt}t≥1 on some state
space X , such that the distribution of Ys | Xs is independent of
Yt | Xt for s ̸= t:

· · · Xt−2 Xt−1 Xt Xt+1 Xt+2 · · ·

Yt−2 Yt−1 Yt Yt+1 Yt+2
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Fusion of Multiple Data Sources

▶ In many applications, sensors capture multiple streams of data,
which are “fused” into a multivariate time series {Yt}t≥1

▶ In such situations, the components of any Yt = (Yt,1, . . . , Yt,d)
cannot be assumed independent (even conditional on Xt)

▶ It is common to assume that Yt follows a multivariate Gaussian
distribution, but this places limits on marginals and dependence
structures

▶ What if the strength of dependence – or even the “kind” of
dependence – between the components of Yt could be informative
about the underlying state Xt?
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Copulas Within HMMs

▶ Our model consists of an HMM {(Yt , Xt)}t≥1 ⊆ Rd × X in which
the state-dependent distributions are copulas:

Yt | (Xt = k) ∼ Hk(·) = Ck

(
Fk,1(· ; λk,1), . . . , Fk,d(· ; λk,d)

∣∣∣ θk︸ ︷︷ ︸
depends on the hidden state value k

)
.

▶ Ck(·, . . . , · | θk) is a d-dimensional parametric copula

▶ {Xt}t≥1 is a Markov process on finite state space X = {1, 2, . . . , K}
and K is known

▶ In this model, virtually all aspects of the state-dependent
distributions are allowed to vary between states
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