Statistical models for and with copulas

Radu Craiu

Department of Statistical Sciences University of Toronto

BIRS, November 1, 2023

Copulas

- A copula is a function that joins multivariate distribution functions to their 1-dimensional marginals.
- ▶ <u>(Sklar's Theorem bivariate case)</u> Let *H* be a joint distribution function with continuous margins *F* and *G*. Then there exists a unique **copula** C s.t. for all $Y_1, Y_2 \in \mathbb{R}$

$$H(Y_1, Y_2) = C(F_1(Y_1), F_2(Y_2))$$

- ▶ The copula *C* binds the marginals into the joint dist'n.
- It characterizes the dependence structure in the model.
- ▶ The copula $C : [0,1] \times [0,1] \rightarrow [0,1]$ itself is a bivariate distribution

Copula models

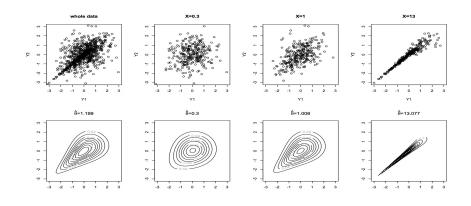
- A copula model involves:
 - Specifying marginal distributions for Y_1 and Y_2 , say $F_1(Y_1|\eta)$ and $F_2(Y_2|\zeta)$
 - Specifying a (parametric) copula distribution C_{θ}
- Estimation can be done in two stages (or one stage if you're Bayesian)
 - First estimate the marginals $F_1(Y|\hat{\eta})$ and $F_2(Y|\hat{\zeta})$
 - Second fit copula $C_{\hat{\theta}}$ to $U_1 = F_1(Y_1|\hat{\eta})$ and $U_2 = F_2(Y_2|\hat{\zeta})$

Copulas: What for?

- Flexible modelling that goes beyond multivariate Gaussianity
- Scientific interest in understanding dependence structure
- ▶ Prediction of Y_1 from $Y_2, Y_3, ...$ (a form of data fusion)
- Imputation of missing data
- Study of extremes (tail dependence, extreme value theory, etc)

Conditional Copulas

Example It is known that there is a dependence between blood pressure (BP) and body mass index (BMI). What if dependence varies with subject's age? Can we still use copulas to model this dependence?



The Model

- Consider a random sample {x_i, y_{1i}, y_{2i}}_{1≤i≤n} and suppose F_{1|η(X)} and F_{2|ζ(X)} are the conditional marginal distributions.
- The conditional copula (CC) model links the conditional joint and the conditional marginal distributions

 $H(Y_1, Y_2)|X \sim C(F_{1|\eta(X)}(Y_1|X), F_{2|\zeta(X)}(Y_2|X)|\theta(X)),$

and $\eta(X)$, $\zeta(X)$, $\theta(X) \in \mathbb{R}^p$ are of interest.

The CC model can be estimated non-parametrically, semi-parametrically (marginals are parametric, θ(X) is NP), Bayesian spline model, additive models, or GP with a SIM twist (θ(X) = f(β^TX)).

Motivation - part 2

• $Y_i | x \sim N(f_i(x), \sigma_i) x \in \mathbb{R}^2$

True marginal means:

•
$$f_1(x) = 0.6 \sin(5x_1) - 0.9 \sin(2x_2)$$

•
$$f_2(x) = 0.6 \sin(3x_1 + 5x_2)$$

• $\sigma_1 = \sigma_2 = 0.2, X_1 \perp X_2.$

Suppose x₂ is not observed so inference is based only on x₁

Motivation - part 2

• $Y_i | x \sim N(f_i(x), \sigma_i) x \in \mathbb{R}^2$

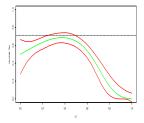
True marginal means:

•
$$f_1(x) = 0.6 \sin(5x_1) - 0.9 \sin(2x_2)$$

•
$$f_2(x) = 0.6 \sin(3x_1 + 5x_2)$$

• $\sigma_1 = \sigma_2 = 0.2, X_1 \perp X_2.$

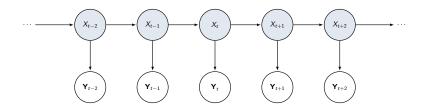
Suppose x_2 is not observed so inference is based only on x_1



6

Hidden Markov Models: A Primer

• A hidden Markov model (HMM) pairs an observed time series $\{\mathbf{Y}_t\}_{t\geq 1} \subseteq \mathbb{R}^d$ with a Markov chain $\{X_t\}_{t\geq 1}$ on some state space \mathcal{X} , such that the distribution of $\mathbf{Y}_s \mid X_s$ is independent of $\mathbf{Y}_t \mid X_t$ for $s \neq t$:



 $\blacktriangleright \mathbf{Y}_{t,h}|\{X_t = k\} \sim f_{k,h}(\cdot|\lambda_{k,h}) \ \forall h = 1,\ldots,d$

► { X_t } is a Markov process (finite state space \mathcal{X}) with initial probability mass distribution { π_i }_{$i \in \mathcal{X}$} and transition probabilities { $\gamma_{i,j}$ }_{$i,j \in \mathcal{X}$}

Radu Craiu

7

Fusion of Multiple Data Sources

- In many applications, sensors capture multiple streams of data, which are "fused" into a multivariate time series {Y_t}_{t≥1}
- ▶ In such situations, the components of any $\mathbf{Y}_t = (Y_{t,1}, \dots, Y_{t,d})$ cannot be assumed independent (even conditional on X_t)
- It is common to assume that Y_t follows a multivariate Gaussian distribution, but this places limits on marginals and dependence structures
- What if the strength of dependence or even the "kind" of dependence – between the components of Y_t could be informative about the underlying state X_t?

Copulas Within HMMs

• Our model consists of an HMM $\{(\mathbf{Y}_t, X_t)\}_{t \ge 1} \subseteq \mathbb{R}^d \times \mathcal{X}$ in which the state-dependent distributions are copulas:

$$\mathbf{Y}_{t} \mid (X_{t} = k) \sim H_{k}(\cdot) = \underbrace{C_{k}\Big(F_{k,1}(\cdot;\lambda_{k,1}), \ldots, F_{k,d}(\cdot;\lambda_{k,d}) \mid \theta_{k}\Big)}_{\text{depends on the hidden state value }k} \Big).$$

- $C_k(\cdot, \ldots, \cdot \mid \theta_k)$ is a *d*-dimensional parametric copula
- ▶ ${X_t}_{t \ge 1}$ is a Markov process on finite state space $\mathcal{X} = {1, 2, ..., K}$ and K is known
- In this model, virtually all aspects of the state-dependent distributions are allowed to vary between states

References

Papers are available here: http://www.utstat.toronto.edu/craiu/