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• Estimation of the roughness length in COSMO-KENDA
Ruckstuhl and Janjic, (2020)

• How can we deal with non-Gaussianity? 
Quadratic Filter, Particle Filter
Ruckstuhl and Janjic, (2018)

• How can we get accurate full error statistics of the background?
Stochastic Galerkin
Janjic, Lukacova, Ruckstuhl and Wiebe (under review)



Augmented state parameter estimation
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Application to roughness length in 
COSMO-KENDA 

• Roughness length accounts for subgrid scale 
orography and land use

• Operational configuration

• Assimilate conventional observations and radar 
reflectivity
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Ruckstuhl and Janjic (2020)

Spatially averaged parameter and momentum surface flux increments.

Model error related to 

surface fluxes is 

projected onto the 

roughness length



Verification against visible 
satellite images Reference Estimated 
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Verification against visible 
satellite images
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Relative Fraction Skill Score of satellite reflectance averaged 
over 60 forecasts

Northern 
Germany

Southern 
Germany



Assimilated wind observations
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What have we learned?

• Parameter compensates for other model errors (in this case surface 
fluxes)

• Estimating the roughness length significantly reduces short term forecast 
errors of clouds and precipitation where surface wind measurements are 
assimilated

• Sufficiently constraining the parameter is key
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How can we better constrain the parameters?
• Increase observational coverage

• Use observations more effectively 
- reduce sampling errors 
(larger ensemble size/localization/reduce degrees of freedom)

- choose DA algorithms that alleviate the Gaussian assumption



Quadratic Filter

ො𝑥 = K𝑣

EnKF

𝑥𝑎 − 𝑥𝑏 = P𝑏HT HP𝑏HT + R
−1
𝑣

𝑣 = 𝑦 − H𝑥𝑏

Quadratic Filter (QF), Hodyss (2012)

ො𝑥 = K𝑣 + G 𝑣 ⊙ 𝑣

෨P =
P𝑓 Pskew
Pskew Pkurt

෩R =
R Rskew
Rskew Rkurt

෤𝑣 =
𝑣

𝑣 ⊙ 𝑣

𝑥𝑎 − 𝑥𝑏 = ෨PHT H෨PHT + ෩R
−1
෤𝑣

𝑥𝑎 − 𝑥𝑏 = min
ො𝑥
E 𝑥 − ො𝑥 2

Deriving EnKF as the 
Best Linear Unbiased Estimate…
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Results modified shallow water model 

• QF is more sensitive to ensemble size than 

EnKF

• QF outperforms EnKF when ensemble size

is sufficiently large

• EnKF-QF outperforms EnKF already for

small ensemble sizes
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EnKF-QF is feasible option!

But maybe we can do even better…

Ruckstuhl and Janjic (2018)



Stochastic Galerkin as alternative to 
ensemble for background error statistics

• Assume all variables are stochastic: 𝜃 𝑥, 𝑡 ←𝜃 𝑥, 𝑡, 𝜔 , 𝜔~𝑁 0,1

• Approximate stochastic variables with a polynomial expansion

𝜃 𝑥, 𝑡, 𝜔 ≈ ෍

𝑘=0

𝑀

෠𝜃𝑘 𝑥, 𝑡 𝜑𝑘 𝜔

where 𝜑𝑘 𝜔 are Hermite polynomials (1, 𝜔, 𝜔2 − 1,… ) and
substitute into model

• Apply weak formulation and use orthogonality of 𝜑𝑘 𝜔 wrt to Gaussian pdf 
to get deterministic system of PDEs  

• Solve numerically for ෠𝜃𝑘 𝑥, 𝑡 , 𝑘 = 1,2,… ,𝑀

In collaboration with Bettina Wiebe and Maria Lukacova



Ensemble versus Stochastic Galerkin
Janjic et al. (under review)



Parameter estimation with SG-DA hybrid

Goal:
Estimate cloud

parameters in ICON



Summary

• Estimating the roughness length improves short term cloud and 
precipitation forecasts

• Parameters need to be sufficiently constrained for successful 
estimation

• Parameters are better constrained when reducing sampling 
errors and using higher order moments of background error 
statistics (QF)

• Using the stochastic Galerkin instead of an ensemble to obtain
accurate full error statistics may open the door to DA algorithms 
like particle filters for parameter estimation 
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