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Lognormal Observational Errors

In Steve Cohn’s seminal paper in 1997, Cohn [1997], there is a definition for the
lognormally distributed errors associated with direct observations of a lognormally
distributed control variable, which is in terms of the ratio of the observed and the
model equivalent. In Fletcher and Zupanski [2006a] the definition for the lognor-
mally distributed observational error, εo , was extended to the case of non-direct
observations as

εo,i ≡
yj

hj (x)
, j = 1, 2, . . . ,No , (1)

where y is the vector of observations, h is the nonlinear observation operator, x
is the model state at the time of the observation, and No is the total number of
observations.

The reason for using the ratio instead of the difference is because it enables
us to use the property that the ratio of two independent lognormally distributed
random variables is also a lognormally distributed random variable.
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Lognormal Background Errors

Given the definition for the lognormal observational errors, the next step is to
introduce the lognormal equivalent for the background errors, εb, which comes from
Fletcher and Zupanski [2007], again defined as a ratio, given by

εb,i ≡
x t
i

xb
i
, i = 1, 2, . . . ,N, (2)

where x t is the true state, xb is the background state, and N is the total number
of state variables.
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Bayes Theorem

Given the definition of the errors, the next step in deriving the variational form of
data assimilation is the consider Bayes theorem, which is given by

P (A | B) ∝ P (B | A)P (A) , (3)

where P (A | B) is referred to as the posterior distribution, P (B | A) is the likelihood
distribution, and P (A) is the apriori distribution.

From Lorenc [1986] the events in (3) are defined as A : x = x t and B : y = yo .
Thus we are either seeking the state that minimises the variance of the posterior
distribution (mean), the unbiased state (median) or the state that has the highest
probability of occurring, referred to as the maximum likelihood state (mode).

For variational data assimilation we seek the mode and the approach that is
applied here is to find the minimum of the negative logarithm of (3).
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Lognormal Distribution

First we need the definition of the multivariate lognormal distribution, which is
given by

LN (µ,Σ) ≡
n∏

i=1

(
1

xi

)
1

(2π)
n
2 |Σ|

1
2

exp

{
−1

2
(ln x − µ)T Σ−1 (ln x − µ)

}
, (4)

where µ ≡ E [ln x ] is the mean of ln x , not x , with E representing the expectation
operator, and Σ is the covariance matrix of ln x .

An important property of the lognormal distribution to note here is that the
logarithm of a lognormally distributed random variable is a Gaussian random
variable, whilst the exponential of a Gaussian random variable is a lognormal
random variable
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Lognormal 3DVAR

Thus, given the definitions for the lognormally distributed background and obser-
vational errors, and the definition for the multivariate distribution, it is possible to
derive the associated 3DVAR cost function as

J
(
x t) =

1

2

(
ln x t − ln xb)T B−1

L
(
ln x t − ln xb)

+
〈(
ln x t − ln xb) , 1N

〉
+

1

2
(ln y − lnh (x))T R−1

L (ln y − lnh (x))

+ ⟨(ln y − lnh (x)) , 1No ⟩ , (5)

where BL and RL are the lognormal background and observational error covariance
matrices respectively, and 1 is a column vector of 1s of dimension N or No .
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Why the mode?

As part of the original work in Fletcher and Zupanski [2006a] a reviewer sug-
gested that we picked the mode because it was the easier one to find. This is not
true! The reason why we picked the mode is because it is the only one of the
descriptive statistics that is degenerate with respect to the variance, but is also
unique. For left (positive) skewed distributions you have the property that

mode ≤ median ≤ mean

where for the lognormal distribution the three descriptive statistics can be shown
to be

exp {µ− ⟨Σ, 1N⟩} < exp {µ} < exp

{
µ+

diag (Σ)

2

}
. (6)

It is clear from the inequality above that as the variances increase that the mode
is tending towards 1, whereas for the same situation the mean is increasing, whilst
the median is invariant.
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Fletcher-Zupanski Distribution

In Fletcher and Zupanski [2006b] we derived a new probability density function
(PDF), where the starting point is to assume that there are p Gaussian random
variables and q lognormal random variables, such that N = p + q. Thus the
associated PDF is given by

MX (µmx ,Σmx) ≡
N∏

i=p+1

(
1

xi

)
1

(2π)
N
2 |Σmx |

1
2

(7)

× exp

{(
xp − µp
ln xq − µq

)T

Σ−1
mx

(
xp − µp
ln xq − µq

)}
,

where Σmx is the covariance matrix between the Gaussian and lognormal random
variables. Of note here is the associated mode:

xmode =

(
µp − ⟨Σpq , 1q⟩

exp {µq − ⟨Σqq , 1q⟩}

)
(8)
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Fletcher-Zupanski Distribution

Figure 1: Plot of bivariate Gaussian, lognormal, and Fletcher-Zupanski distributions with
ρ = 0.5.
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Mixed Gaussian-lognormal 3DVAR

To be able to derive the associated 3DVAR cost function for the mixed distri-
bution we need the definition for the mixed distributed errors, which are given by

εb
mx ≡

(
x t
p1

− xb
p1

ln x t
q1

− ln xb
q1

)
, εo

mx ≡
(

yp2 − hp2 (x)
ln yq2 − lnhq2 (x)

)
(9)

where there are p1 Gaussian distributed background errors, p2 distributed Gaussian
observational errors, q1 lognormally distributed background errors, and q2 lognor-
mally distributed observational errors, with N = p1 + q1, No = p2 + q2, and it
maybe the case that p1 ̸= p2 and q1 ̸= q2.
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Mixed Gaussian-lognormal 3DVAR

Thus given the definitions for the mixed distribution errors and the multivari-
ate PDF, through following the maximum likelihood approach the associated cost
function is

Jmx (x) =
1

2

(
x t
p1

− xb
p1

ln x t
q1

− ln xb
q1

)T

B−1
mx

(
x t
p1

− xb
p1

ln x t
q1

− ln xb
q1

)
+

〈(
x t
p1

− xb
p1

ln x t
q1

− ln xb
q1

)
,

(
0p1

1q1

)〉
+

1

2

(
yp2 − hp2 (x)

ln yq2 − lnhq2 (x)

)T

R−1
mx

(
yp2 − hp2 (x)

ln yq2 − lnhq2 (x)

)
+

〈(
yp2 − hp2 (x)

ln yq2 − lnhq2 (x)

)
,

(
0p2

1q2

)〉
. (10)
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Application of mixed Gaussian-lognormal Distribution

In Kliewer et al. [2016] the mixed distribution was introduced in to the CIRA 1-
Dimensional Optimal Estimator (C1DOE) by Dr. Anton Kliewer to asses the impact
on retrieving temperature and mixing-ratio values from microwave brightness tem-
peratures. It was assumed that the observational errors were Gaussian distributed,
whilst for the background errors it was assumed that errors for temperature were
Gaussian distributed, and those for the mixing-ratio were lognormally distributed.

An important finding from Kliewer et al. [2016] was that by using a lognormal
model for the mixing-ratio enables us to fit better to the temperature channels, so
called O-A statistics.
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Results from Kliewer et al (2016)

Figure 2: O-A statistics from Kliewer et al. [2016].
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CIRA Data Assimilation Testbed: CDAT

Figure 3: Sample of the output from CDAT. https://cdat.cira.colostate.edu
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Is the mode the best statistic?

Whilst undertaking the research for Kliewer et al. [2016] we used a test case
where we created a fake brightness temperature from a specific first guess and
added some small and larger errors to check if the retrieval worked as we thought,
but it did not and when we gave it the correct first guess the mode was worse the
the logarithmic transform (median). But why?

Upon coding up an one variable equivalent of C1DOE it became clear that if
the aprori state is within a bound of the true state, then the median was the best
minimiser. However, if this was not the case then there were regions where either
the mode or the mean could minimise the errors.
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Fletcher et al. [2019]
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Figure 4: Results from Fletcher et al. [2019].
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Summary of non-Gaussian developments at CIRA

Full Field mixed 4DVAR, Fletcher [2010].

Incremental mixed VAR, Fletcher and Jones [2014].

Mixed Gaussian-lognormal Kalman filter, Fletcher et al. [2023b]

Lognormal and mixed Gaussian-lognormal based Buddy check system for
observational quality control, Fletcher et al. [2023a]
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Is lognormal the only other distribution for moisture?
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Is lognormal the only other distribution for moisture?

The answer is no, and the plots above show that there is a negative-skewed distribu-
tion present here. We have determined this to be a reverse lognormal distribution.
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Summary of Reverse Lognormal DA

The reverse lognormal distribution is part of the 3-parameter family of lognormal
distributions, Foster et al. [2006]. Its definition is similar to that of the lognormal
distribution, but now has an upper bound ξ. Thus the reverse lognormal distribution
is defined on (−∞, ξ) and is given by

P (x) ≡ 1

(ξ − x)σ
√
2π

exp

{
− (ln (ξ − x)− µ)2

σ2

}
. (11)

It is possible to define a mixed distribution that contains Gaussian, lognormal,
and reverse lognormal random variables, Fletcher [2022] and then derive a 3DVAR
cost function, Goodliff et al. [2023], as well as a Kalman filter like assimilation
scheme, Van Loon and Fletcher [2023].
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Which Distribution to Use?

In Goodliff et al. [2020] we use a support vector machine (SVM) and a neural
network (NN) approach to determine whether or not it is possible to detect and
predict a change in the distribution in the Lorenz 1963 model, Lorenz [1963]. Below
is a copy of figure 5 from Goodliff et al. [2020].
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When to use which distribution?

There are two approaches that were considered to detect the change of distri-
bution in Goodliff et al. [2020]: 1) Detect that the sample mean and mode are
not equal, 2) Detect a positive of negative skewness in the sample. It is the latter
approach that has proven the most successful.

The SWM approach was implemented for the Gaussian and lognormal ap-
proaches for 3DVAR with the L63 model in Goodliff et al. [2022] with a study
on performance relative to different times between observations and sample size to
determine the detection of skewness.

Work undertaken by Dr. Jakir Hossen indicated that a third machine learning
technique, K-Nearest Neighbors (KNN) performed better at predicting the change
in distribution in the L63 model than the other two techniques.
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K-Nearest Neighbours

Generate long run of Lorenz-63
model

Test skewness of z over some time
period

s(tk) = skewtest{z(tk−w ), . . . , z(tk+w )}

Divide into three bins

s ≥ σ Lognormal,

−σ < s < σ Gaussian,

s ≤ −σ Reverse lognormal.

Train k-nearest neighbor classifier
on {x(tk), y(tk)} as input

w = 8
σ = 1

accuracy ≃ 98%
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Optimal Training Data

Table 1: Performance of ML techniques with different length of data (two-third used for
training), from Goodliff et al. [2023].

Methods 10000 20000 30000 36000 50000 100000
Radius 4

KNN 89.9% 92.7% 92.2% 94.0% 94.5% 94.6%
NN 85.5% 89.4% 87.9% 92.4% 91.4% 90.5%
SVM 85.4% 84.0% 84.6% 86.3% 84.6% 85.1%

Radius 8
KNN 89.9% 92.2% 93.3% 95.2% 95.2% 96%
NN 88.2% 92.7% 90.1% 92.8% 93.9% 93.0%
SVM 85.7% 85.0% 86.2% 88.3% 86.8% 87.8%

Radius 12
KNN 92.0% 92.9% 94.9% 96.1% 96.0% 97.1%
NN 90.9% 91.4% 92.0% 93.8% 92.8% 93.4%
SVM 85.5% 86.3% 87.7% 88.6% 89.1% 89.9%
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Optimal Training Data, Goodliff et al. [2023]

We consider three different radii: 4, 8 & 12 time steps i.e 9, 17 & 25 points
around the current point of which skew value is calculated.

After training the model with the training data set, we use spatial
coordinates of testing data set to predict the skewvalue sp corresponding to
the z-component in the testing data set st .

Using st and sp, we calculate the accuracy (%).

We found that the accuracy does not change significantly after 36000 time
steps for all the three radii. Using a higher number of time steps (e.g. 50000
and 100000), the accuracy rather decreases for the case of NN and SVM.

Using a training trajectory of 36000 time steps, the KNN method provides
accuracy of 94%, 95% and 96% for 4, 8 & 12 time step radius, respectively.

Similarly, the NN method provides the accuracy of 92%, 93% and 94% and
SVM provides 86%, 88% & 88%.
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Conclusions and Further Work

Have developed many forms of lognormal and reverse-lognormal based
variational and Kalman filter based data assimilation systems.

Comparing different ML techniques to determine which distribution the z
component of the Lorenz 63 model is following, we have seen that the
K-Nearest Neighbour approach appears to be optimal at predicting which
version of the cost function, or Kalman filter to use to minimise the analysis
error.

Have shown that 36000 time steps of the Lorenz 63 model appears to be the
optimal time needed to train the KNN for this model and that it is a waste of
resources to go beyond this.

We have been developing a lognormal and a reverse lognormal version of the
MLEF.

Have extended the buddy check observational quality control to lognormal
and mixed Gaussian-lognormal formulations, currently working on the reverse
lognormal version.
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