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Outline:
• Data Assimilation and Inverse Modelling
• Importance of Atmospheric Methane

• Gaps and Limitations
• Questions

• Model and Observations
• Covariance Modeling and Parameter Estimation

• Part I:   Design of an Assimilation System for Methane

• Part II:  Assimilation Results with Optimal Error Statistics

• Part III: Assimilation Use in Methane Emissions Inversion
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Data Assimilation and Inverse Modelling
are statistical frameworks to:
• Obtain consistent, precise, and evolving 3-dimensional picture of the atmosphere
• Fill in data gaps and inferring information about unobserved variables

CTM : Chemistry Transport Model
DA: Data Assimilation
IM: Inverse Modelling (or Inversion)

+ 𝜖! + 𝜖" + 𝜖#
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Why Atmospheric Methane?

Data obtained from Dlugokencky (2022)

• Largest anthropogenic radiative forcing after CO2

• Short lifetime and ~30 times greater GWP than CO2

• Outsized influence on near-term climate change 

• Large air quality impact, (e.g., O3 production)

• Global average concentration acceleration after 2007

GWP: Global Warming Potential

Because of the large climate and air quality impact
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Gaps and Limitations in the Past Methane Studies

1. Challenges in Emissions Inversion

• Scale, temporal, and spatial resolution (Turner et 
al., 2015; Zavala-Araiza et al., 2017) 

• Initial and boundary conditions (Bousserez et al. 
2016; Bergamaschi et al. 2018)

• Contradiction in the result of different inversions 
(Ganesan et al., 2019; Miller et al., 2019)

• High computations to estimate the state errors 
(Yu et al., 2021; Voshtani et al., 2022a)
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2. Limitations in Estimation Problem

• Perfect model assumptions (Janardanan et al., 2020; 
Zhang et al., 2021)

• Error statistics are already optimal (Voshtani et al., 2022b)

• Separate evaluations on the error statistics (Voshtani et al., 
2022b)

• Concentration uncertainties and error correlations in the 
observation space (Voshtani et al., 2023; in review)
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Research Questions?
Q1:    How to obtain a low-cost yet powerful DA system, capable of estimating uncertainties? 
Q2:    What is the impact of optimal error statistics on the analysis?
Q3:    Can we improve on 4D-Var inversion using optimal analysis and their uncertainties?

(Optimal Analysis) + (𝜖∗)#
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A1: PvKF A2: CV

A3: PvKF + 4D-Var

CV: Cross-ValidationPvKF: Parametric variance Kalman Filter
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Model and Data (+ Adaptation)
Model: Hemispheric CMAQ v5 and CMAQ-ADJ
• Processing Emissions:  

Anthropogenic (EDGAR v6) + Natural (WetCHARTs v3.0)
• Modifying chemical mechanism of gas-phase chemistry in CCTM:     
CH! + OH → CH" + H#O

Data: GOSAT observations
• Bias correction relative to ObsPack surface observations
• Quality control (i.e., removing outliers)

Bias correction 
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Covariance Modelling
Examples of suitable correlation functions:
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Q1: How to obtain a low-cost DA system, capable of 
estimating uncertainties? 

PvKF: Parametric variance Kalman Filter

A1: PvKF
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Part I: Development of PvKF Assimilation

• Large state-space problem (e.g., ~1.5e6 elements)

• Produces forecast and analyses and explicitly evolve its error variance

• Computationally advantageous compared to 4D-Var and EnKF

• Accounts for model imperfection

• High potential for real-time or operational assimilation  
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Part I: Evolution of the State
Methane Analysis (with DA) vs. Methane Model (without DA) 
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Part I: Evolution of the Error Variance

Methane Analysis
Error Variance:
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Part I: Verification with Single Observation
Analysis increment (Day 0) Analysis increment (Day 3)

Error variance reduction (Day 0) Error variance reduction (Day 3)
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Q2: What is the impact of optimal error statistics on the 
Analysis?

(Optimal Analysis) + (𝜖∗)#

We want to obtain
• Optimal (true) analysis
• Realistic error statistics

A2: CV

CV: Cross-Validation
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Part II: Why Cross-Validation? 

2( ( )) ( )tr J O A= = -A α arg min ( ) optimal J Þ
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(Ménard and Deshaies-Jacques, 2018a) 

Because it does not assume that the analysis is already optimal
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Part II: Cross-Validation with GOSAT
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Part II: Estimate Error Covariances Parameters 
Optimizing CV cost function to obtain error parameters, corresponding to optimal solution.

[𝐿# , 𝐿$] = [350𝑘𝑚, 7𝜎%]

𝑓& = 0.5
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Part II: Impact of Optimal Estimation
Optimal estimation parameters:

0.5, 0.45, 0.018, 350 km, 7o i q
h vf f f L L s= = = = =

1.2, 0.45, 0, 600 km, 1o i q
h vf f f L L s= = = = =

Non-optimal estimation but commonly used parameters:
Optimality of error parameters has a 
crucial impact on the assimilation result.
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Q3: Can we improve on 4D-Var inversion using optimal 
analysis and their uncertainties?

(Posterior Emissions)

A3: PvKF + 4D-Var
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Part III: Observing System Simulation 
Experiments (OSSEs)
To evaluate the 
proposed inversion: Δ𝑒&!'()*+!* = 𝑒&!'()*+!* − 𝑒(*,)

Δ𝑒&*+!* = 𝑒&*+!* − 𝑒(*,)
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Part III: Use of PvKF Assimilation for Emissions 
Inversion (4D-Var)
𝑦: Observations
𝑥: Emission scaling factor
𝑐: Model/assimilation concentration
𝐑: Observation error covariance
𝐏: Forecast error covariance
𝐐: Model transport error covariance
𝐀: Analysis error covariance

This study

Classical form
(Previous studies)
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Part III: Different From of 4D-Var Cost Functions
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𝑐%# : optimal analysis field
𝐏(𝐀%): propagated analysis error covariance
𝐏(𝐐) : propagated modelling (transport) error covariance

𝑐'( 𝐏(𝐀%) 𝐏(𝐐)

𝑐'( 𝐏(𝐀%) 𝐏(𝐐)

𝑐'( 𝐏(𝐀%) 𝐏(𝐐)

𝑐'( 𝐏(𝐀%) 𝐏(𝐐)This study

Classical form
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Part III: Uniform Perturbations
This study Classical form Other variation
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Part III: Uniform Perturbations

Type 0 Type 1 Type 2 Type 3

This study Classical form Other variation
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Part III: Non-uniform Perturbations
This study

Classical form Other variation
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Conclusions & Future Work
(I) PvKF assimilation is a stand-alone DA framework that improves our understanding of atmospheric methane estimation

• No need to assume a perfect model
• Provides an (continuous) estimation of methane analysis and its uncertainties cost-effectively 

(II) Realistic error statistics and optimal analysis play a key role in PvKF assimilation
• Optimal analysis is obtained by optimizing error statistics using cross-validation
• Non-optimal error covariances can lead to an analysis even worse than the model forecast 

(III) PvKF assimilation can be used in conjunction with an inversion system
• Improve the typical 4D-Var inversion results by providing more sophisticated form of error correlations and initial optimal analysis 

field

Suggestions for future work

• Extending PvKF assimilation framework to a jointly source-state estimation (i.e., emissions error will be estimated as part of the solution)
• Further development of PvKF assimilation for other species such as short-lived pollutants (likely requires evolving error correlations)
• Conducting PvKF with dense satellite observations (e.g., TROPOMI) for high-resolution inversion in regional domain (e.g., CONUS)
• Application of PvKF analysis to remove (measurement) biases over remote area such as oceans

Background Motivation Research Tools Research Project III Conclusions
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