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An Alternative to Standard Covariance Propagation

Covariance propagation, e.g.,

Pk+1 = Mk+1,k(Mk+1,kPk)T+Qk

Issues with Covariance Propagation:

• Inaccurate variance propagation

• Computational expense

Alternative: evolve the variance and correlation length at full rank, and recon-

struct P using parametric correlation functions.

“Local covariance evolution” (Cohn, 1993) ⇒ Parametric Kalman Filter (e.g.,

Pannekoucke et al. 2016)
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Local Covariance Evolution, 1D

Consider covariances P = P(x1, x2, t) associated with states q = q(x , t) on the unit

circle (S1
1 ),

qt + vqx + bq = 0,

q(x , t0) = q0(x)

Pt + v1Px1 + v2Px2 + (b1 + b2)P = 0,

P(x1, x2, t0) = P0(x1, x2)

Variance Equation:

σ2
t + vσ2

x + 2bσ2 = 0,

σ2(x , t0) = σ2
0(x)

Correlation Length Equation:

Lt + vLx − vxL = 0,

L(x , t0) = L0(x)

1. Evolve σ2 and L from initial condition P0(x1, x2) = σ0(x1)C0(x1, x2)σ0(x2).

2. Approximate P(x1, x2, t) = σ(x1, t)C (x1, x2, t)σ(x , t) with evolved σ2 and L using

a parametric correlation function.
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The Gaspari and Cohn (1999) Correlation Function

Figure 1: Figure 7

from Gaspari and

Cohn (1999). The

function C0(z , a, c) is

the general form of the

compactly-supported,

fifth-order, piecewise

rational correlation

function derived in

their Sec. 4(c).

Typically, a = 1/2

(solid black).
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The Generalized Gaspari-Cohn (GenGC) Correlation Function

Correlation length for the compactly-supported, piecewise rational:

L = c

(
3(22a2 + 3a + 1)

40(8a2 − 2a + 1)

)1/2

, a = 1/2⇒ L =
√

0.3c

Need to generalize this correlation function to allow for variable L.

Generalized Gaspari-Cohn

Allow a = ak and c = ck to vary over the spatial index k .

Now L = Lk can vary!
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Construction of the GenGC Correlation Function

For fixed ck > 0 and ak ∈ R, define the following compactly-supported, radially

symmetric functions R3:

hk(r ; ak , ck) =


(2(ak − 1)||r ||/ck + 1)nk , 0 ≤ ||r || ≤ ck/2,

2aknk(1− ||r ||/ck), ck/2 ≤ ||r || ≤ ck ,

0, ck ≤ ||r ||,

with nk = (44a2
k + 6ak + 2)−1/2.

For each fixed k , ` = 1, 2, ...,m, GenGC is defined by the convolution,

Bk`(r , s) = (hk ∗ h`)(r − s) =

∫
R3

hk(v)h`(r − s − v)dv .
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Generalized Gaspari-Cohn (GenGC), 1D Example

Figure 2: Correlations constructed

on the unit circle (S1
1 ) for constant a

and c (top row) and

spatially-varying, continuous a and c

(bottom row). White regions in the

correlation matrix (middle column)

correspond to correlations between

−0.003 and 0.003.
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———————————————————————————–

Demonstration

———————————————————————————–
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Correlations from Direct, Full Rank Covariance Propagation, tf = T

Figure 3: Adapted from Gilpin et al. (2022): Correlation matrices extracted from covariances evolved from the

Gaspari-Cohn correlation function for a0 = 1/2, c0 = 0.25, and σ2
0 = 1, evolved in time up to slightly after a full time

period. Errors in full rank propagation are between −0.713 and 0.450 9



Current Work, Correlation Reconstruction with GenGC, tf = T

Figure 4: Left: correlation matrix approximated with GenGC using evolved correlation lengths L, a = 0.5 constant,

c0 = 0.25. Right: the exact correlation matrix. Errors in the GenGC approximation are between −0.0009 and 0.0008.
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Correlations from Direct, Full Rank Covariance Propagation, tf = T/2

Figure 5: Adapted from Gilpin et al. (2022): Correlation matrices extracted from covariances evolved from the

Gaspari-Cohn correlation function for a0 = 1/2, c0 = 0.25, and σ2
0 = 1, evolved in time up to slightly after half a time

period. Errors in full rank propagation are between −0.557 and 0.339
11



Current Work, Correlation Reconstruction with GenGC, tf = T/2

Figure 6: Left: correlation matrix approximated with GenGC using evolved correlation lengths L, a = 0.5 constant,

c0 = 0.25. Right: the exact correlation matrix. Errors in the GenGC approximation are between −0.0124 and 0.0107.
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Concluding Remarks and Further Investigation

• Local covariance evolution is an alternative means of mitigating problems

associated with covariance propagation.

• The Generalized Gaspari-Cohn correlation function has several additional

applications (e.g., covariance modeling, localization, coupled data assimilation).
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Extra Slides
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Generalized Gaspari-Cohn (GenGC), 2D Example

Figure 7: Left: Background a and c fields as functions of longitude and

latitude over Colorado. Right: 2D correlations with respect to ? for the

given a and c fields, plotted using a Mercator projection.
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