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PERSONAL UPDATES

• Retired from ECCC July 1, 
2022

• Working a few hours per 
week now (institutional 
memory)
– Contract renewed yearly

– Focus on state estimation of 
GHG (CO2) with operational 
global weather forecast model.  
Currently: 3D-Var.  Future: Add 
CH4, EnVar? Coupled 
state/flux estimation?

CO2 near surface
Jan 4. 2010 20 UTC

Global model
• 0.9° × 0.9°
• Lid at 0.1 hPa
• CO2, CH4, CO
• 3DVar CO2 DA
Model details in 
Polavarapu et al. 
(2016, ACP)

Regional model
• 10 km grid
• Lid at 0.1 hPa
• CO2, CH4, CO
Model details in Kim 
et al. (2020, GMD), 
CO2  flux inversion 
Jinwoong Kim talk



OUTLINE

Coupling of meteorology and tracers (CO2)
1. In the forecast model

• Conserving tracer mass

• Diagnostic: spatial scales of CO2 uncertainty due to uncertain 
meteorology

2. In flux inversion
• Diagnostic: Change in CO2 state due to fluxes versus uncertain 

meteorology

3. In CO2 3D-Var data assimilation
• Diagnostic: Global mass evolution?



1. THE FORECAST MODEL



COUPLED 
LAND/OCEAN/ATMOSPHERE

weather

https://www.esrl.noaa.gov/gmd/ccgg/basics.html



Sub-daily fluxes (biospheric, ocean, anthropogenic, biomass burning)

Global coupled weather-GHG models include:
• ECMWF CAMS  (Agusti-Panareda et al. 2014)
• ECCC (Polavarapu et al. 2016)
• NASA GMAO (Weir et al. 2021)
• NOAA GML (Bruhwiler, BIRS presentation 2023)

Initial CO2 on 
1 Jan 2009 from 
CarbonTracker

3-hourly fluxes from NOAA CarbonTracker (CT2013B, CT2019B)

COUPLED GLOBAL WEATHER AND 
GREENHOUSE GAS MODELS



COUPLED METEOROLOGY AND CHEMISTRY

• Meteorological model equations (momentum, thermodynamic, 
equation of state)

• Species continuity equation for mixing ratio: 

• For greenhouse gases: tracer mass conservation desired
• Tracer variable: dry air mixing ratio is desired

species

moist air

mass

emission, dry 
deposition, wet 
deposition, 
photochemistry, 
gas/particle 
partitioning, etc.

Density moist air Diffusion coefficient



CONSERVING TRACER MASS IN GEM

Tracer adv

1. The model loses mass during the dynamics step, so psadj-dry adjusts the global dry air mass so it is 
conserved.  The tracer mixing ratio is not adjusted even though the dry air mass is not locally 
conserved.

2. Tracer mass is changed during advection so the mass fixer is applied for global conservation.  This 
requires knowledge of the dry air mass field (Ps, q) 

3. During Physics, water vapour (q) is changed so dry air is changed so tracer needs adjusting.
4. Mass change due to change in q from physics is added to Ps.
5. Emission is added so the tracer mass changes.  q and Ps are needed.
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EXPERIMENTAL DESIGN: PREDICTABILITY

• Analyses constrain CO2 transport using observed meteorology 
even with no CO2 assimilation

• What if we don’t use analyses (after the initial time) and 
replace them with 24h forecasts?   Climate cycle

• Climate cycle will drift from control cycle which uses analyses

Reference cycle Climate cycle



EXPERIMENTAL DESIGN: ANALYSIS 
ERROR

• Climate cycle is an extreme case.  In reality analyses keep 
our cycle close to observations.  But analyses are not perfect.  
What is the impact of analysis error on CO2 spatial scales?  

• Experiment: Perturb reference analyses by error

• Analysis error proxy:  Cycle with analysis 6h early

Reference cycle Perturbed analysis cycle



• Error spectra asymptote to predictability error spectra.  For smaller spatial scales, we don’t 
gain much over predictability error.

• For some wavenumber, the power in this error equals that in the state itself (red arrows). 
There is a spatial scale below which  CO2 is not resolved due to analysis uncertainty. This 
spatial scale increases with altitude.

• CO2 predictability on regional scale in limited area domain (Kim et al. 2021, JGR)

2000 500

770 km 1000 km 1000 km400 km

Imperfect winds
No wind info
CO2 state ref

Polavarapu et al. (2016, ACP)

IMPACT OF METEOROLOGICAL ANALYSIS 
UNCERTAINTY



IMPLICATIONS ON FLUX INVERSIONS
If CO2 can be reliably simulated only for large spatial scales, this 

translates to flux uncertainties which are unaccounted for.

Time presentpast

Prior flux estimate

observations



IMPLICATIONS ON FLUX INVERSIONS

Time presentpast

observations

Posterior flux estimate

If CO2 can be reliably simulated only for large spatial scales, this 

translates to flux uncertainties which are unaccounted for.



IMPLICATIONS ON FLUX INVERSIONS

Time presentpast

observations

Posterior flux estimate

If CO2 can be reliably simulated only for large spatial scales, this 

translates to flux uncertainties which are unaccounted for.



2. INVERSE MODELING



Does the change in CO2 induced by updated flux estimates 
exceed the uncertainty in CO2 due to imperfect meteorology?

Time step n0

Dcn
x

x0,n-1
a

x0,n-1
b

a) Meteorological uncertainty

Time step n0

s0,n-1
a

s0,n-1
b Dcn

s
b) Flux increments



CHANGE IN CO2 DUE TO FLUX ESTIMATION 

Once the flux signal has diffused to large-scale structures (~3 months in troposphere), there will be 
no contribution to zonal std-dev.  So zonal std-dev reflects shorter time scales than zonal mean.

• CO2 change due to GOSAT flux increments exceeds change in CO2 due to 
perturbed met analyses except in boreal winter in lower trop.

• CO2 change due to insitu flux increments exceeds change in CO2 due to 
perturbed met analyses only in boreal summer in lower trop.

Polavarapu et al. (2018, ACP)

lower troposphere mid trop upper trop

GOSAT GEOS-Chem/GEM
In situ GEOS-Chem/GEM



3. DATA ASSIMILATION 



3D-VAR ESTIMATION OF CO2 STATE

CO2 obs

Spatial interpolation

Forecast error 
covariance matrix

6h forecast of CO2

CO2 state
Observation error 
covariance matrix

• January 1-30, 2015, 6h update cycle
• Model: GEM-MACH-GHG 400x200 global uniform
• CO2 observations: aircraft, surface, tower continuous obs from NOAA Obspack at  

all times (day and night) obspack_co2_1_GLOBALVIEWplus_v6.1_2021-03-01
• Obs errors: from CT_MDM values in ObsPack
• Prior fluxes: CT2019B posterior fluxes
• Initial state: Jan. 1, 2015 0 UTC from CT2019B molefractions
• Background error covariance matrix: From O3 assimilation for correlations, 

standard deviations vary with height for 3 zonal bands: NE, TR, SE.

Previous work was with EnKF for simulated CO observations (Khade et al. 2021, GMD)



Expected mass

Evolution of global mass of CO2

January 2015

Global CO2 mass evolution in Jan 2015

Expected tracer-mass 
from prescribed 
surface fluxes

Model

Time series of CO2 global mass show 
departures from the mass expected 
from prescribed CO2 surface fluxes.  
This is because:

1) The global dry-air mass 
changes in the model when a 
new meteorological analysis 
is inserted every 6 h

2) Assimilating CO2

observations will create 
adjustments to the CO2 state 
and hence the global CO2

mass



DEALING WITH DRY AIR MASS CHANGES AT ASSIMILATION 
WINDOW INTERFACES

If we can account for the change in dry-air mass across the temporal boundary between 
analysis cycles, then we can compare the magnitude of global mass change in CO2 due 
to dry-air mass changes in the model to the change due to assimilating CO2 observations.

Forecast 
surface 
pressure

Analysis 
surface 
pressure

Time



The change in mass due to 
global dry-air mass 
adjustments (a) can exceed 
that due to assimilation of 
CO2 data (b)

Applies global tracer-
mass scaling scheme

Control

Global CO2 mass due to analysis increments

a

b

a) Mass change due 
to dry-air mass 
adjustments

b) Mass added 
through CO2 data 
assimilation 

Expected tracer-mass 
from prescribed 
surface fluxes



Trenberth and Smith (2005, J.Clim):
Global dry air mass
(5.132 ± 0.005) × 1018 kg

Global water vapor:
(1.25 ± 0.1) × 1016 kg

Y-axis range is 0.0007 × 1018 kg
Ticks are 0.0001 × 1018 kg

Global dry air mass in GEM

Jan 1 Jan 29



SUMMARY

Coupling of meteorology and tracers (CO2)

1. In the forecast model
• Diagnostic: spatial scales of CO2 uncertainty due to uncertain meteorology

2. In flux inversion
• Diagnostic: Change in CO2 state due to fluxes versus uncertain meteorology

3. In CO2 3D-Var data assimilation
• Diagnostic: Global mass evolution

Feedback?

Contact: saroja.polavarapu@ec.gc.ca, Teams, Zoom, etc.

mailto:saroja.polavarapu@ec.gc.ca
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