Framework For Comparing Error Covariance Estimation Schemes

Michael Sitwell, Environment and Climate Change Canada Mathematical Approaches of Atmospheric Constituents Data Assimilation and Inverse Modeling workshop

> Banff, March 23, 2023 (Richard Ménard, ECCC)

Introduction

- Specification of error covariances can impact the quality of the analyses
 - Background error covariances B
 - Observation error covariances R
- Difficult to accurately specifying error covariances \widetilde{B} and \widetilde{R}
 - Helpful to have methods to diagnose and/or tune the error covariances
- For simplicity, we focus on tuning variances only

$$\widetilde{\mathbf{B}}' = s_{\mathrm{b}}\widetilde{\mathbf{B}}$$
 $\widetilde{\mathbf{R}}' = s_{\mathrm{o}}\widetilde{\mathbf{R}}$

Observation-Space Residuals

The innovation vector d does not depend on the true variables

observations background linear obs. operator

 $\mathbf{d} = \mathbf{y} - H(\mathbf{x}_b) \approx \mathbf{\epsilon}_o - \mathbf{H}\mathbf{\epsilon}_b$ $\mathbf{D} = \operatorname{cov}(\mathbf{d}, \mathbf{d}) = \mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R}$

- However, B and R are not separate in D
 - Want modelled quantities \widetilde{B} and \widetilde{R}

Hollingsworth and Lönnberg

- Assumes we can attribute all spatial correlations in the innovation to the background
 - $\tilde{\mathbf{R}}$ assumes diagonal

Canada

- $\tilde{\mathbf{B}}$ terms are fit to the observed innovation at nonzero spatial separation
- Extrapolation to zero spatial separation

Bouttier, F., and P. Courtier. "Data assimilation concepts and methods March nvironnement 1999." Meteorological training course lecture series. ECMWF 718 (2002): 59.

The Desroziers and Ivanov 2001 Method (DI01)

• For variational assimilation systems

innovation covariance consistency $E[\mathbf{D}] = \widetilde{\mathbf{D}}$

$$E[J_{b}(\mathbf{x}_{a})] = \frac{1}{2}Tr[\mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{T}\widetilde{\mathbf{D}}^{-1}E[\mathbf{D}]\widetilde{\mathbf{D}}^{-1}] \xrightarrow{E[\mathbf{D}]=\widetilde{\mathbf{D}}} \frac{1}{2}Tr[\mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{T}\widetilde{\mathbf{D}}^{-1}]$$

$$\mathbf{E}[J_{o}(\mathbf{x}_{a})] = \frac{1}{2} \mathrm{Tr}[\widetilde{\mathbf{R}}\widetilde{\mathbf{D}}^{-1}\mathbf{E}[\mathbf{D}]\widetilde{\mathbf{D}}^{-1}] \xrightarrow{\mathbf{E}[\mathbf{D}] = \widetilde{\mathbf{D}}} \frac{1}{2} \mathrm{Tr}[\widetilde{\mathbf{R}}\widetilde{\mathbf{D}}^{-1}]$$

• Iterative scheme:

$$(s_{b}^{\text{DI01}})_{i+1} = \frac{\text{Tr}[\mathbf{H}\widetilde{\mathbf{B}}_{i}\mathbf{H}^{\text{T}}\widetilde{\mathbf{D}}_{i}^{-1}\mathbf{D}\widetilde{\mathbf{D}}_{i}^{-1}]}{\text{Tr}[\mathbf{H}\widetilde{\mathbf{B}}_{i}\mathbf{H}^{\text{T}}\widetilde{\mathbf{D}}_{i}^{-1}]} \qquad (s_{o}^{\text{DI01}})_{i+1} = \frac{\text{Tr}[\widetilde{\mathbf{R}}_{i}\widetilde{\mathbf{D}}_{i}^{-1}\mathbf{D}\widetilde{\mathbf{D}}_{i}^{-1}]}{\text{Tr}[\widetilde{\mathbf{R}}_{i}\widetilde{\mathbf{D}}_{i}^{-1}]}$$

 Has been used in a NWP assimilation system, but difficult to implement due to high computational cost

The Desroziers et al. 2005 Method (D05)

$$E[(H(\mathbf{x}_{a}) - H(\mathbf{x}_{b}))\mathbf{d}^{T}] = \mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{T}\widetilde{\mathbf{D}}^{-1}E[\mathbf{D}] \xrightarrow{E[\mathbf{D}]=\widetilde{\mathbf{D}}} \mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{T}$$
$$E[(\mathbf{y} - H(\mathbf{x}_{a}))\mathbf{d}^{T}] = \widetilde{\mathbf{R}}\widetilde{\mathbf{D}}^{-1}E[\mathbf{D}] \xrightarrow{E[\mathbf{D}]=\widetilde{\mathbf{D}}} \widetilde{\mathbf{R}}$$

• Iterative scheme:

$$(s_{\mathbf{b}}^{\mathrm{D05}})_{i+1} = \frac{\mathrm{Tr}[\mathbf{H}\widetilde{\mathbf{B}}_{i}\mathbf{H}^{\mathrm{T}}\widetilde{\mathbf{D}}_{i}^{-1}\mathbf{D}]}{\mathrm{Tr}[\mathbf{H}\widetilde{\mathbf{B}}_{i}\mathbf{H}^{\mathrm{T}}]} \qquad (s_{\mathbf{o}}^{\mathrm{D05}})_{i+1} = \frac{\mathrm{Tr}[\widetilde{\mathbf{R}}_{i}\widetilde{\mathbf{D}}_{i}^{-1}\mathbf{D}]}{\mathrm{Tr}[\widetilde{\mathbf{R}}_{i}]}$$

Typically much less computationally demanding than DI01

Method Comparisons

- Different methods can produce very different results
- For DI01 and D05, not evident exactly how B and R are being separated
- Mathematical formalism needed for:
 - Direct comparison between methods
 - Why do they work?
 - Understanding different regimes for each method:
 - When do each method give reasonable results or fail?

Filtering and the Analysis

• Transform to basis that simultaneously diagonalizes and $\mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{T}$ and $\widetilde{\mathbf{R}}$

$$\phi = \frac{\text{spectra of } \widetilde{\mathbf{R}}}{\text{spectra of } \mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{\text{T}}}$$

• Construct operators:

 $\mathbf{\tilde{F}}$ that dampens modes prominent in $\mathbf{\tilde{R}}$ as compared to $\mathbf{H}\mathbf{\tilde{B}}\mathbf{H}^{\mathrm{T}}$

 $I-\tilde{F}$ that dampens modes prominent in $H\widetilde{B}H^{T}$ as compared \widetilde{R}

1D periodic domain of length L = 40,000 km, observations $\Delta x =$ 40 km apart. $L_{\rm b} =$ 800 km and $L_{\rm o} =$ 0

$$\mathbf{H}\mathbf{x}_{a} = (\mathbf{I} - \mathbf{\tilde{F}})\mathbf{H}\mathbf{x}_{b} + \mathbf{\tilde{F}}\mathbf{y} = \mathbf{H}\mathbf{x}_{b} + \mathbf{\tilde{F}}\mathbf{d}$$

Filtering of Error Covariances

observed covariancesmodelled covariances
$$\mathbf{D}_B \equiv \tilde{\mathbf{F}} \mathbf{D} \tilde{\mathbf{F}}^{\mathrm{T}}$$
 $\widetilde{\mathbf{D}}_B \equiv \tilde{\mathbf{F}} \widetilde{\mathbf{D}} \tilde{\mathbf{F}}^{\mathrm{T}}$ $\mathbf{D}_R \equiv (\mathbf{I} - \tilde{\mathbf{F}}) \mathbf{D} (\mathbf{I} - \tilde{\mathbf{F}})^{\mathrm{T}}$ $\widetilde{\mathbf{D}}_R \equiv (\mathbf{I} - \tilde{\mathbf{F}}) \widetilde{\mathbf{D}} (\mathbf{I} - \tilde{\mathbf{F}})^{\mathrm{T}}$

Page **9** – 4/16/14

Vectorization of Matrices

Frobenius inner product: $\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{vec}(\mathbf{A}) \cdot \operatorname{vec}(\mathbf{B}) = \operatorname{Tr}[\mathbf{A}^{\mathrm{T}}\mathbf{B}]$

Page **10** – 4/16/14

Linear Least-Squares Solution

$$\mathbf{y} = \mathbf{M}x + \mathbf{\epsilon}, \ \operatorname{cov}(\mathbf{\epsilon}, \mathbf{\epsilon}) = \mathbf{C}$$

linear least-squares solution is $\hat{x} = \frac{\mathbf{M}^{\mathrm{T}}\mathbf{C}^{-1}\mathbf{y}}{\mathbf{M}^{\mathrm{T}}\mathbf{C}^{-1}\mathbf{M}}$

model covariance observed data

$$s_{o}^{DI01} = \frac{\overline{\operatorname{vec}(\widetilde{\mathbf{D}}_{R})^{\mathrm{T}}}(\widetilde{\mathbf{D}}_{R} \otimes \widetilde{\mathbf{R}})^{-1} \operatorname{vec}(\mathbf{D}_{R})}{\operatorname{vec}(\widetilde{\mathbf{D}}_{R})^{\mathrm{T}}}(\widetilde{\mathbf{D}}_{R} \otimes \widetilde{\mathbf{R}})^{-1} \operatorname{vec}(\widetilde{\mathbf{D}}_{R})}$$

Linear Least-Squares Solution

$$\int_{\mathbf{O}} = \frac{1}{2} \|\mathbf{d} - \mathbf{H} \Delta \mathbf{x}\|_{\widetilde{\mathbf{R}}^{-1}}^2$$

$$J_{R}^{\text{DI01}} \equiv \frac{1}{2} \| S_{0} \widetilde{\mathbf{D}}_{R} - \mathbf{D}_{R} \|_{(\widetilde{\mathbf{D}}_{R} \otimes \widetilde{\mathbf{R}})^{-1}}^{2}$$

$$\underset{S_{0}}{\text{minimize}}$$

$$\underset{S_{0}}{\text{w.r.t.}}$$

$$S_{0}^{\text{DI01}} = \frac{\text{vec}(\widetilde{\mathbf{D}}_{R})^{\text{T}} (\widetilde{\mathbf{D}}_{R} \otimes \widetilde{\mathbf{R}})^{-1} \text{vec}(\mathbf{D}_{R})}{\text{vec}(\widetilde{\mathbf{D}}_{R})^{\text{T}} (\widetilde{\mathbf{D}}_{R} \otimes \widetilde{\mathbf{R}})^{-1} \text{vec}(\widetilde{\mathbf{D}}_{R})}$$

$$J_R^{\text{D05}} \equiv \frac{1}{2} \| S_0 \widetilde{\mathbf{D}}_R - \mathbf{D}_R \|_{(\widetilde{\mathbf{R}}_R \otimes \mathbf{I})^{-1}}^2$$

$$\underset{S_0}{\text{minimize}}$$

$$w.r.t.$$

$$S_0$$

$$s_0^{\text{D05}} = \frac{\text{vec}(\widetilde{\mathbf{D}}_R)^{\text{T}} (\widetilde{\mathbf{R}}_R \otimes \mathbf{I})^{-1} \text{vec}(\mathbf{D}_R)}{\text{vec}(\widetilde{\mathbf{D}}_R)^{\text{T}} (\widetilde{\mathbf{R}}_R \otimes \mathbf{I})^{-1} \text{vec}(\widetilde{\mathbf{D}}_R)}$$

Geometric Interpretations

Geometric Interpretations

Spectral Distinctiveness of Filters

Error Covariance Filtering Efficiency

L=40,000 km, $\,\tilde{\sigma}_{\rm b}^{\,2}=\tilde{\sigma}_{\rm o}^{\,2}$, $L_{\rm o}=0$

Environnement Environment Canada Canada Page **17** – 4/16/14

Statistical Properties

$$\frac{E[s_{b}^{DI01}]}{s_{b}^{t}} = 1 + \left(\frac{s_{o}^{t}}{s_{b}^{t}} - 1\right) \frac{\langle \mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{T}, \widetilde{\mathbf{R}} \rangle_{(\widetilde{\mathbf{D}} \otimes \widetilde{\mathbf{D}})^{-1}}}{\langle \mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{T}, \widetilde{\mathbf{D}} \rangle_{(\widetilde{\mathbf{D}} \otimes \widetilde{\mathbf{D}})^{-1}}} \qquad \qquad \frac{E[s_{o}^{DI01}]}{s_{o}^{t}} = 1 + \left(\frac{s_{b}^{t}}{s_{o}^{t}} - 1\right) \frac{\langle \mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{T}, \mathbf{R} \rangle_{(\widetilde{\mathbf{D}} \otimes \widetilde{\mathbf{D}})^{-1}}}{\langle \widetilde{\mathbf{R}}, \widetilde{\mathbf{D}} \rangle_{(\widetilde{\mathbf{D}} \otimes \widetilde{\mathbf{D}})^{-1}}}$$
$$V\left[\frac{s_{b}^{DI01}}{s_{b}^{t}}\right] = \frac{2\mathrm{Tr}\left[\left(\mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{T}\widetilde{\mathbf{D}}^{-1}\left(\mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{T} + \frac{s_{o}^{t}}{s_{b}^{t}}\widetilde{\mathbf{R}}\right)\widetilde{\mathbf{D}}^{-1}\right)^{2}\right]}{\mathrm{Tr}\left[\mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{T}\widetilde{\mathbf{D}}^{-1}\right]^{2}} \qquad V\left[\frac{s_{o}^{DI01}}{s_{o}^{t}}\right] = \frac{2\mathrm{Tr}\left[\left(\widetilde{\mathbf{R}}\widetilde{\mathbf{D}}^{-1}\left(\frac{s_{b}^{t}}{s_{o}^{t}}\mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{T} + \widetilde{\mathbf{R}}\right)\widetilde{\mathbf{D}}^{-1}\right)^{2}\right]}{\mathrm{Tr}\left[\widetilde{\mathbf{R}}\widetilde{\mathbf{D}}^{-1}\right]^{2}}$$

*case where correlations are properly specified

Environnement Environment Canada Canada Page **18** – 4/16/14

Evaluating Expected Performance

• Case 1:

- Model error covariances with $L_b = 1,000 \text{ km}$
- Using observed innovations, calculated $s_{\rm b}^{\rm DI01}=2.6$ and $s_{\rm o}^{\rm DI01}=1.3$

$$\theta_{\tilde{B},\tilde{R}} = 83^{\circ} \quad \Longrightarrow \quad \frac{\text{RMSE}[s_{b}^{\text{DI01}}] \approx 17\%}{\text{RMSE}[s_{o}^{\text{DI01}}] \approx 4\%}$$

• Case 2:

 $\theta_{\tilde{B},\tilde{R}} = 26^{\circ}$

- Model error covariances with $L_{\rm b} = 250 \ {\rm km}$
- Using observed innovations, calculated $s_{\rm b}^{\rm DI01} = 3.3$ and $s_{\rm o}^{\rm DI01} = 1.1$

$$RMSE[s_b^{DI01}] \approx 35\%$$
$$RMSE[s_o^{DI01}] \approx 84\%$$

5810-point Lebedev grid, $\Delta x \sim 100 \; \rm km - \; 330 \; \rm km$

Generalized Algorithm

DI01 and D05 part of a larger class of algorithm, each defined by their choice of weights

$$\hat{s}_{b} = \frac{\operatorname{vec}(\widetilde{\mathbf{D}}_{B})^{\mathrm{T}}(\mathbf{W}_{1} \otimes \mathbf{W}_{2})\operatorname{vec}(\mathbf{D}_{B})}{\operatorname{vec}(\widetilde{\mathbf{D}}_{B})^{\mathrm{T}}(\mathbf{W}_{1} \otimes \mathbf{W}_{2})\operatorname{vec}(\widetilde{\mathbf{D}}_{B})} \qquad \qquad \hat{s}_{o} = \frac{\operatorname{vec}(\widetilde{\mathbf{D}}_{R})^{\mathrm{T}}(\mathbf{W}_{1} \otimes \mathbf{W}_{2})\operatorname{vec}(\mathbf{D}_{R})}{\operatorname{vec}(\widetilde{\mathbf{D}}_{R})^{\mathrm{T}}(\mathbf{W}_{1} \otimes \mathbf{W}_{2})\operatorname{vec}(\widetilde{\mathbf{D}}_{R})}$$

• Weighting of $(\widetilde{\mathbf{D}}_B \otimes \widetilde{\mathbf{D}}_B)^{-1}$ and $(\widetilde{\mathbf{D}}_R \otimes \widetilde{\mathbf{D}}_R)^{-1}$ gives algorithm to satisfy the χ^2 diagnostic with $\hat{s}_b = \hat{s}_o$

Page 20 - 4/16/14

Weighting in Least-Squares Fitting

• If $\mathbf{d} \sim \mathcal{N}(\mathbf{0}, \mathbf{D})$, then the sample covariance **S** follows a Wishart distribution with $V[S_{i,j}] \propto D_{i,j}^2 + D_{i,i}D_{j,j}$

Method	J_B weighting	J_R weighting
DI01	$(\widetilde{\mathbf{D}}_{B}\otimes(\mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{\mathrm{T}}))^{-1}$	$(\widetilde{\mathbf{D}}_R \otimes \widetilde{\mathbf{R}})^{-1}$
D05	$(\widetilde{\mathbf{B}}_B \otimes \mathbf{I})^{-1}$	$(\widetilde{\mathbf{R}}_R \otimes \mathbf{I})^{-1}$
χ^2	$(\widetilde{\mathbf{D}}_B \otimes \widetilde{\mathbf{D}}_B)^{-1}$	$(\widetilde{\mathbf{D}}_R \otimes \widetilde{\mathbf{D}}_R)^{-1}$

Page **21** – 4/16/14

Comparisons Between Methods

1D periodic domain $L = 40,000 \text{ km}, \Delta x = 40 \text{ km}, L_0 = 0$

1D periodic domain $L = 40,000 \text{ km}, L_{b} = 600 \text{ km}, L_{o} = 0$

Conclusions

• DI01, D05, and HL all fit modelled to observation error covariances

- Fitting is explicit for HL, implicit for DI01 and D05
- Conceptually, DI01 and D05 only differ by the weighting of the cost functions
 - Numerical differences between DI01 and D05 are important
- Performance of DI01 and D05 can be quantified through geometric quantities like $\theta_{\tilde{B},\tilde{R}}$
- Analytic results for error covariances scaling statistics

Sitwell, Michael, and Richard Ménard. "Framework for the comparison of a priori and a posteriori error variance estimation and tuning schemes." *Quarterly Journal of the Royal Meteorological Society* 146.731 (2020): 2547-2575.

Extra Slides

Spectral Distinctiveness of Filters

$$\|\mathbf{H}\tilde{\mathbf{B}}\mathbf{H}^{T}\|_{(\tilde{\mathbf{D}}\otimes\tilde{\mathbf{D}})^{-1}}^{2} = \mathrm{Tr}[\tilde{\mathbf{F}}\tilde{\mathbf{F}}] = \sum_{i} \frac{1}{(1+\phi_{i})^{2}}$$

$$\|\tilde{\mathbf{R}}\|_{(\tilde{\mathbf{D}}\otimes\tilde{\mathbf{D}})^{-1}}^{2} = \mathrm{Tr}[(\mathbf{I}-\tilde{\mathbf{F}})(\mathbf{I}-\tilde{\mathbf{F}})] = \sum_{i} \frac{\phi_{i}^{2}}{(1+\phi_{i})^{2}}$$

$$\langle \mathbf{H}\tilde{\mathbf{B}}\mathbf{H}^{T}, \tilde{\mathbf{R}} \rangle_{(\tilde{\mathbf{D}}\otimes\tilde{\mathbf{D}})^{-1}} = \mathrm{Tr}[\tilde{\mathbf{F}}(\mathbf{I}-\tilde{\mathbf{F}})] = \sum_{i} \frac{\phi_{i}}{(1+\phi_{i})^{2}}$$

$$\cos(\theta_{\tilde{B},\tilde{R}}) = \frac{\langle \mathbf{H}\tilde{\mathbf{B}}\mathbf{H}^{T}, \tilde{\mathbf{R}} \rangle_{(\tilde{\mathbf{D}}\otimes\tilde{\mathbf{D}})^{-1}}}{\|\mathbf{H}\tilde{\mathbf{B}}\mathbf{H}^{T}\|_{(\tilde{\mathbf{D}}\otimes\tilde{\mathbf{D}})^{-1}} \times \|\tilde{\mathbf{R}}\|_{(\tilde{\mathbf{D}}\otimes\tilde{\mathbf{D}})^{-1}}}$$

$$(1.0)$$

$$L_{b} = 120 \text{ km}$$

$$L_{b} = 10 \text$$

Limiting Cases

- 1D periodic domain with $L_b \rightarrow \infty$, $L_o \rightarrow 0$:
 - Only one overlapping wavenumber

$$\cos(\theta_{\tilde{B},\tilde{R}}) = \frac{1}{\sqrt{\left(1 + \frac{1}{\phi_0}\right)^2 \left(\frac{L}{\Delta x} - 1\right) + 1}} \qquad \qquad \theta_{\tilde{B},\tilde{R}} \xrightarrow{\Delta x \to 0}$$

- $\mathbf{H}\widetilde{\mathbf{B}}\mathbf{H}^{\mathrm{T}} \propto \widetilde{\mathbf{R}}$:
 - \tilde{F} and $I+\tilde{F}$ have flat spectra

$$heta_{ ilde{B}, ilde{R}}=0^{\circ}$$

Page $26 - \frac{4}{16}$

90°

Angles Between Error Covariances

5810-point Lebedev grid, $\Delta x \sim 100 \text{ km} - 330 \text{ km}$

Angles Between Error Covariances

Environnement Environment Canada Canada Page **28** – 4/16/14

χ^2 Diagnostic

• Weighting of $(\widetilde{\mathbf{D}}_B \otimes \widetilde{\mathbf{D}}_B)^{-1}$ and $(\widetilde{\mathbf{D}}_R \otimes \widetilde{\mathbf{D}}_R)^{-1}$ gives algorithm to satisfy the χ^2 diagnostic with $\hat{s}_b = \hat{s}_o$

$$\chi^2$$
 diagnostic satisfied if $\langle \widetilde{\mathbf{D}}, \mathbf{D} \rangle_{(\widetilde{\mathbf{D}} \otimes \widetilde{\mathbf{D}})^{-1}} = \left\| \widetilde{\mathbf{D}} \right\|_{(\widetilde{\mathbf{D}} \otimes \widetilde{\mathbf{D}})^{-1}}^2 = N_{\text{obs}}$

$$\left\|\boldsymbol{D}-\widetilde{\boldsymbol{D}}\right\|^2_{(\widetilde{\boldsymbol{D}}\otimes\widetilde{\boldsymbol{D}})^{-1}} = \left\|\boldsymbol{D}\right\|^2_{(\widetilde{\boldsymbol{D}}\otimes\widetilde{\boldsymbol{D}})^{-1}} - \left\|\widetilde{\boldsymbol{D}}\right\|^2_{(\widetilde{\boldsymbol{D}}\otimes\widetilde{\boldsymbol{D}})^{-1}}$$

Page 29 – 4/16/14

Comparing to Hollingsworth and Lönnberg

• First minimize
$$J_B^{\text{HL}} = \frac{1}{2} \| s_b \mathbf{V} \circ \widetilde{\mathbf{D}} - \mathbf{V} \circ \mathbf{D} \|_{(\widetilde{\mathbf{\Sigma}}_b^2 \otimes \widetilde{\mathbf{\Sigma}}_b^2)^{-1}}^2$$

$$\mathbf{v} \equiv \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \cdots \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

• Then minimize $J_R^{\text{HL}} = \frac{1}{2} \left\| \mathbf{I} \circ (s_b^{\text{HL}} \mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{\text{T}} + s_o \widetilde{\mathbf{R}}) - \mathbf{I} \circ \mathbf{D} \right\|_{(\widetilde{\Sigma}_0^2 \otimes \widetilde{\Sigma}_0^2)^{-1}}^2$ minimize w.r.t. S_o $s_o^{\text{HL}} = \frac{\langle \mathbf{I} \circ \widetilde{\mathbf{R}}, \mathbf{I} \circ (\mathbf{D} - s_b^{\text{HL}} \mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{\text{T}}) \rangle_{(\widetilde{\Sigma}_0^2 \otimes \widetilde{\Sigma}_0^2)^{-1}}}{\| \mathbf{I} \circ \widetilde{\mathbf{R}} \|_{(\widetilde{\Sigma}_0^2 \otimes \widetilde{\Sigma}_0^2)^{-1}}^2}$

Comparisons Between Methods

1D periodic domain $L = 40,000 \text{ km}, \Delta x = 40 \text{ km}, L_0 = 40 \text{ km}$