

Towards CO2 plume detection and inversion from satellites using deep neural networks

Atmospheric Constituents Data Assimilation and Inverse Modeling- 23/03/22

Joffrey Dumont Le Brazidec¹, Pierre Vanderbecken¹, Alban Farchi¹, Marc Bocquet¹, Jinghui Lian², Grégoire Broquet², Thomas Lauvaux², Alexandre Danjou²

CEREA, École des Ponts and EdF R&D, Île-de-France, France [1] LSCE, Laboratoire des sciences du climat et de l'environnement [2]

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958927.

CoCO2, prototype system for a CO2 monitoring service

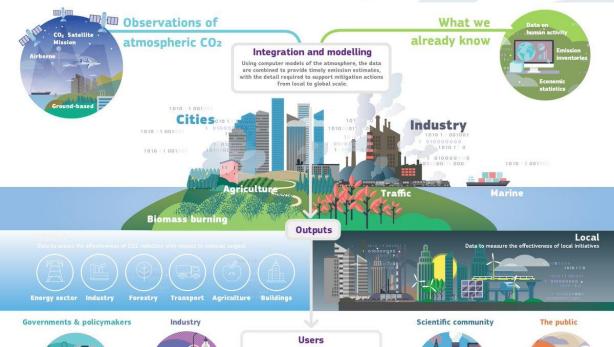
Our work = part of the Copernicus CoCO2 project,

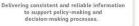
prototype of a CO₂ monitoring service which aims, in particular, to improve the estimation of CO₂ emissions from new satellites launched from 2025 onwards.

Our aim:

Focus on CO₂emissions from point sources:

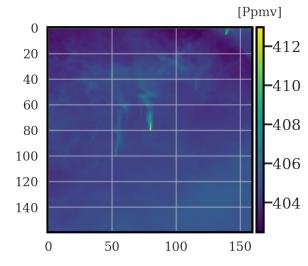
- □ large magnitude
- urban scale





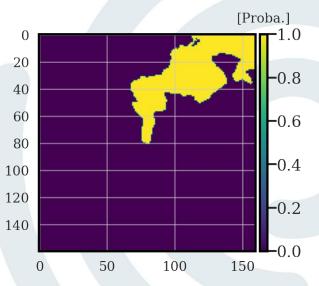
based on the spaceborne imagery of the CO₂ atmospheric plumes from these sources.

Estimating CO2 emissions from a satellite image



Inversion:

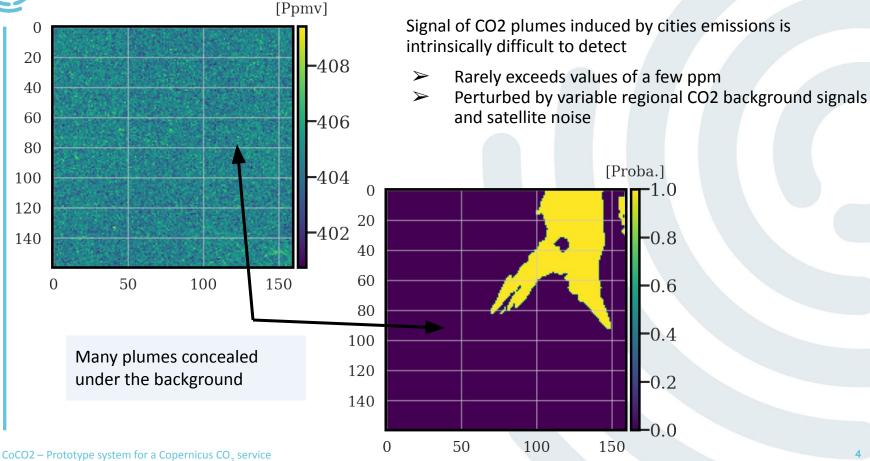
From a given satellite image: estimate emission rates from a point source Emissions and "consequences" of the emissions: the plume, are directly related



Segmentation:

-> find map of probabilities (pixel values between 0 and 1) describing potential positions of the plume

Where is the plume ?



Detectability factors¹

Signal-to-noise ratio:

- "Background" noise:
 - Variability of the background
 - Instrument noise
- Plume "definition" (signal):
 - Meteorological conditions, which determine dilution and dispersion
 - Intensity of the source emission
- ➤ Image integrity:
 - Clouds
 - Number of satellite overpasses

 Detectability of CO2 emission plumes of cities and power plants with the Copernicus Anthropogenic CO2 Monitoring (CO2M) mission. Kuhlman et al.

Simulate satellite

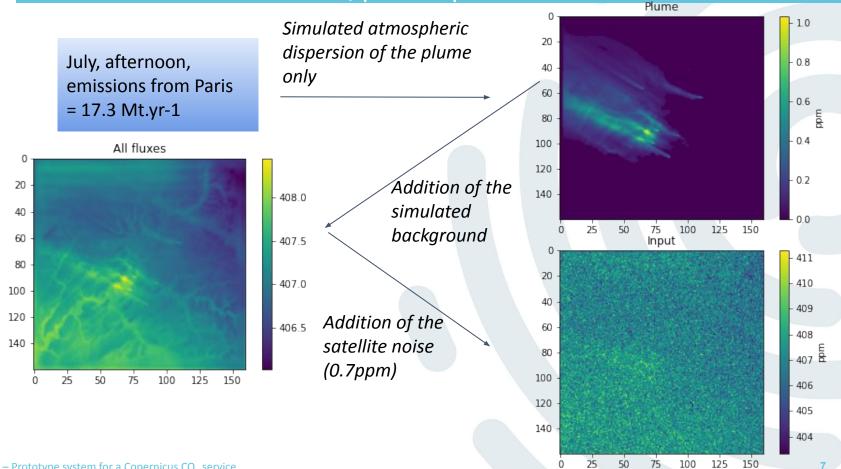
observations (OSSE)

Outline

To segment and inverse plumes in images with low SNR ratio: need of techniques that can learn specific characteristics of plumes, other than high signal, such as spatial patterns

-> deep learning methods

- I. In the framework of CoCO2: creation of a synthetic dataset, i.e., of pairs of XCO2 field/plume or emission
- II. Segmentation
- III. Inversion

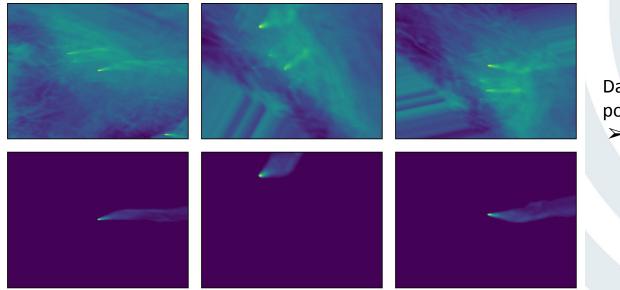


Get the widest possible diversity of plumes

Variety of point sources, geographical areas, plume types, plumes number ... 1-year simulation (~2km, 1hr) of the XCO2 fields in the

- Paris (LSCE/Suez-Origins) with CHIMERE model
- Berlin, and ~15 power plants (EMPA) with COSMO-GHG model

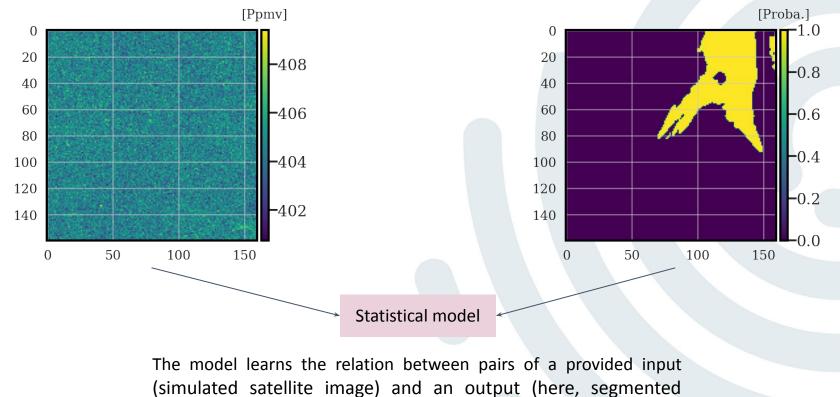
areas, tracing the anthropogenic plume and other bio and anthropogenic components.



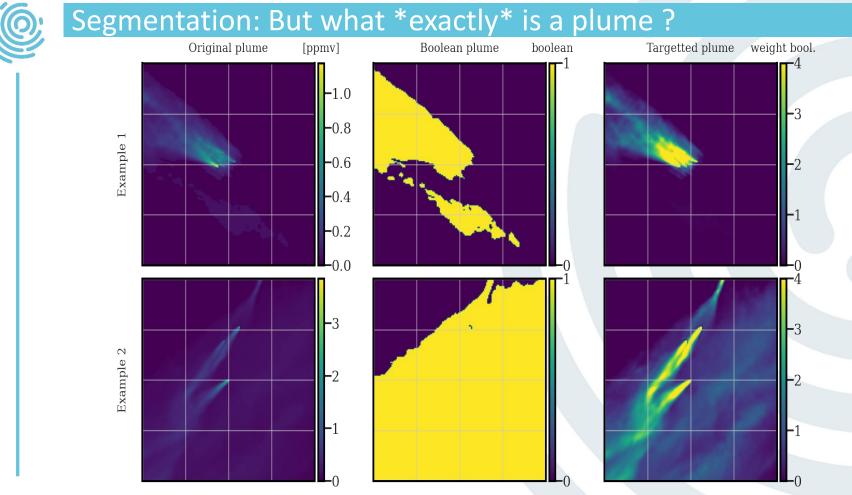
Dataset must be as diverse as possible:

 use of data augmentation techniques to artifically "create" more plumes

Segmentation: Supervised learning

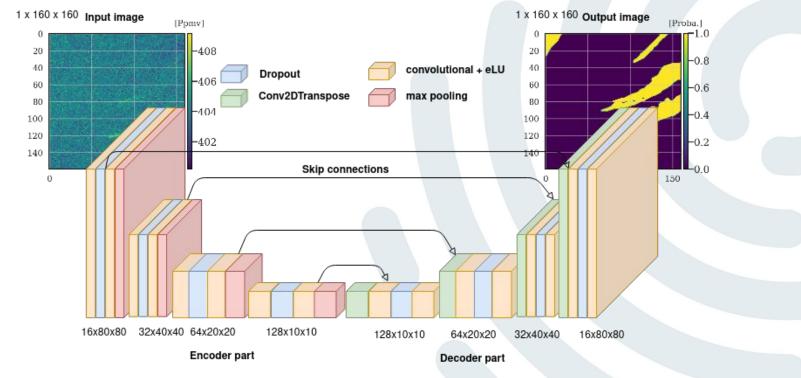


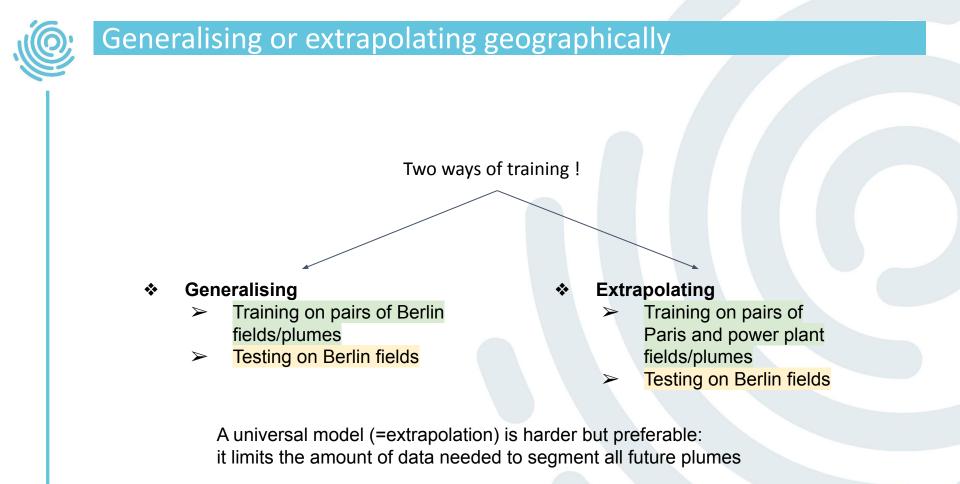
plume)



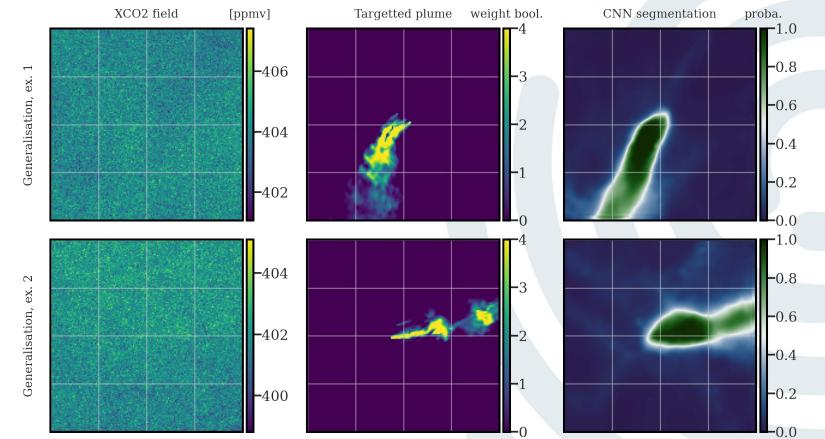
Segmentation: U-net CNN with EfficientNetB0 encoder

- capture spatial features of the image through application of successive filters
- i.e., transform image into relevant features maps
- used to recognise spatial features that belong to an anthropogenic plume

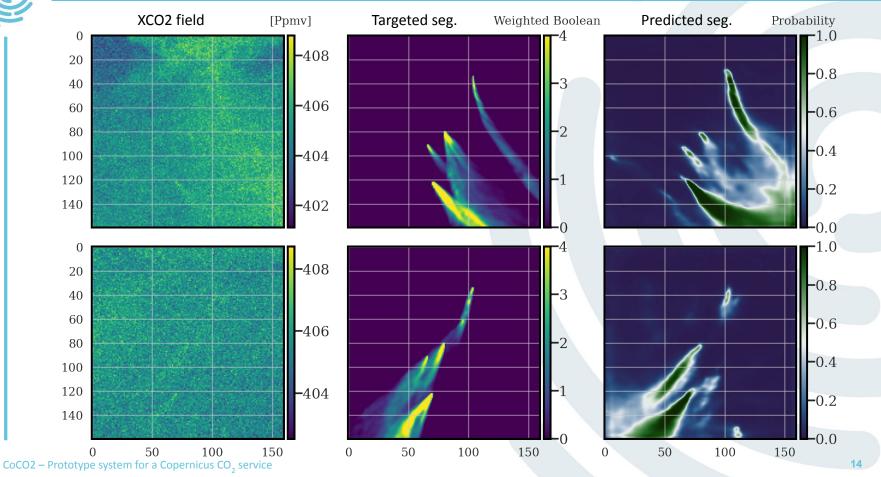




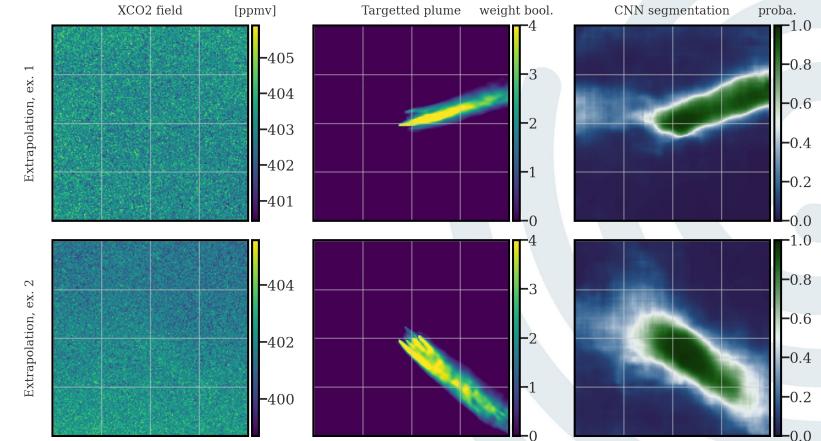
Segmentation: Generalisation on Berlin



Segmentation as generalisation: multi-plume PP area

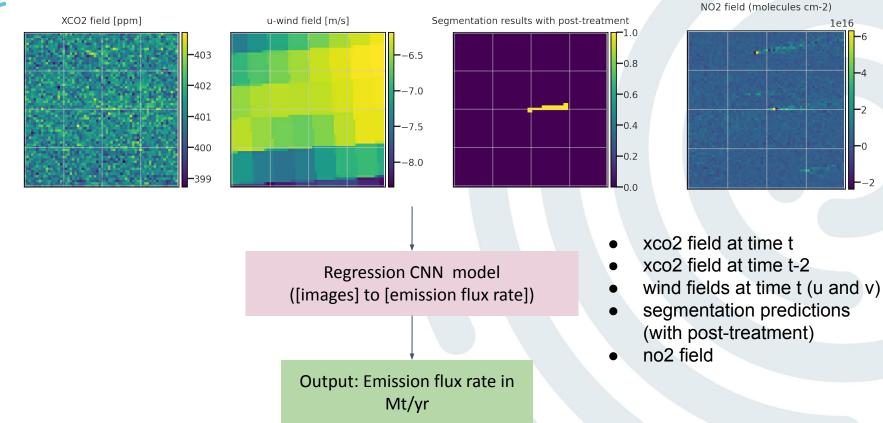


Segmentation as extrapolation: Berlin

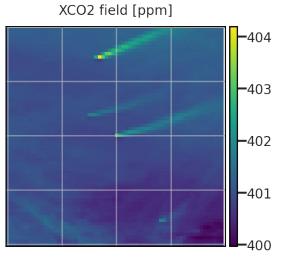


15

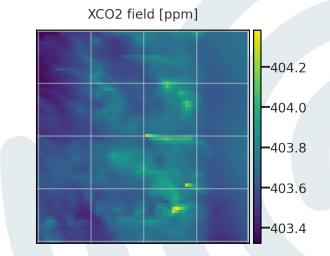
Inversion: Set-up



Inversion: About the data



Boxberg - emissions flux: 23.5 Mt/yr



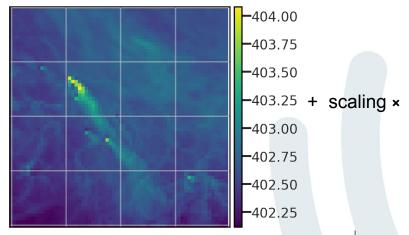
Patnow - emissions flux: 7.0 Mt/yr

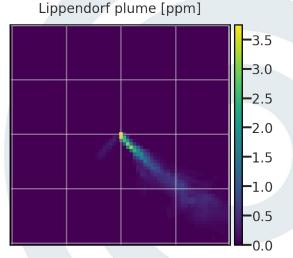
Power plants for test considered are various:

- power plant above background noise / of high emission rate (e.g. Boxberg)
- power plant below background noise / of low emission rate (e.g. Patnow)
- power plant with multiple "high" plumes (e.g. Boxberg)

Inversion: data augmentation ?

Lippendorf background [ppm]





Key is to generate new data at training time:

- each image used to train the CNN has new random gaussian noise
- each {plume, emission} of an image used to train the CNN is scaled by a random scaling factor

scaling × emission flux

Inversion: About the model

Model:

Inversion is a less complicate problem than segmentation.

- For ~ the same base set of images
- ★ for segmentation, good performance is achieved with encoders such as EfficientNetB0 (~5M parameters)
- ★ for inversion, good performance is achieved with much simpler regression models (~100k parameters)

Several "small" state-of-the-art models (with descaling) have been considered (squeezenet, shufflenet) but less good performances than simple model only consisting of convolutions, maxpooling, dropout, ...

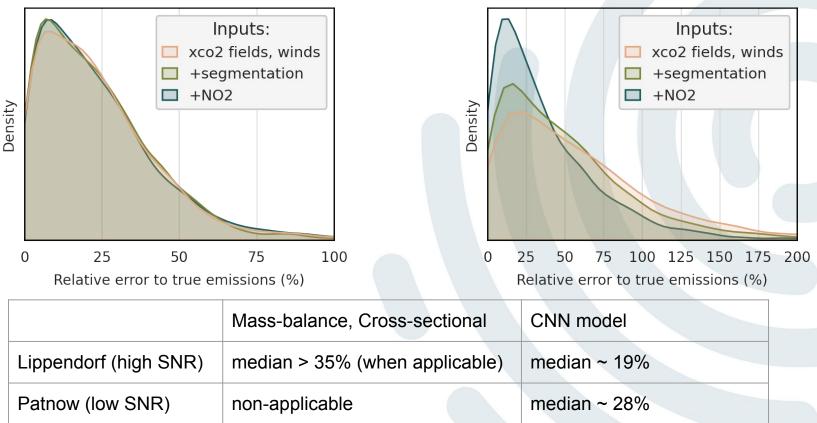
Training

Model only trained only in "geographical extrapolation" mode. For example:

- Train: on a subset of power plants excluding Boxberg
- *Test*: on Boxberg power plant.

Inversion: preliminary results

Lippendorf (emission flux range: 10-25 Mt/yr)



Patnow (emission flux range: 5-10 Mt/yr)

Conclusions - next steps

Inversion conclusions

CNN models for XCO2 plume inversion:

- I. Ability to perform inversion on low SNR plumes with the help of a segmentation pre-step or NO2 fields
- II. CNN models outperform standard plume inversion methods with or without the help of NO2 fields
- III. Performance is not degraded by the presence of multiple plumes on the same image

Next steps

- Inversion of city plumes. But few data available ...
- Consideration of clouds on images.
- Dealing with real CO2 satellite observations (coming in 2027)

joffrey.dumont@enpc.fr

THANK YOU

Dumont Le Brazidec, Joffrey, Pierre Vanderbecken, Alban Farchi, Marc Bocquet, Jinghui Lian, Grégoire Broquet, Gerrit Kuhlmann, Alexandre Danjou, et Thomas Lauvaux. 2022. « Segmentation of XCO₂ Images with Deep Learning: Application to Synthetic Plumes from Cities and Power Plants ». *Geoscientific Model Development Discussions*, décembre, 1-29. https://doi.org/10.5194/gmd-2022-288.

This presentation reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

