

On the observability quest for chemistry data assimilation and emission inversion

Hendrik Elbern, Nadine Goris, Xueran Wu Rheinisches Institut for Environmental Research at the an der University of Cologne, and Research Centre Jülich

Contents

- 1. Introduction
- 2. What needs to be observed? Central case ozone photochemistry
- 3. When can emissions be quantified? Initial? Boundary? Domain emissions?
- 4. A practical approach for a full fledged CTM Where and what to observe to predict
- 5. Conclusions

Contents

1. Introduction

- 2. What needs to be observed?
- 3. When can emissions be quantified?
- 4. A practical approach for full fledged CTMS
- 5. Conclusions

Critical questions (>20 a old, yet not fully answered)

- With O(100) prognostic variables, and only few observations, why do you expect chemistry data assimilation to be successful?
- How do you plan to avoid artificial chemical imbalances by "correcting" through single observations? (Push from a slow manifold)
- 3. Why do you improve initial values, while the system is controlled by emissions?

An observability quest:

→Do we observe sufficiently complete?

Introduction: Setting the scene:stratospheric chemistry example167 gas phase reactions +10 heterogeneous reactions on polar strat. clouds

Table 1. Photolysis reactions included in the SAC

represents constituents that are not considered in thi

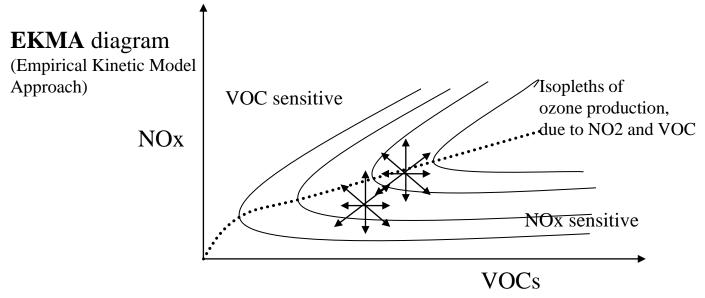
represents constituents that are not con	Table 2. Gas phase reactions that are inclu-	uded in			
Reaction	- "products" represents constituents which are n	not consid			
$\begin{array}{ll} (\text{R1}) & \text{O}_2 + h\nu \rightarrow \text{O}(^3\text{P}) + \text{O}(^3\text{P}) \\ (\text{R2}) & \text{O}_3 + h\nu \rightarrow \text{O}(^3\text{P}) + \text{O}_2 \end{array}$	Reaction				
$\begin{array}{ll} (\text{R3}) & \text{O}_3 + h\nu \rightarrow \text{O}(^1\text{D}) + \text{O}_2 \\ (\text{R4}) & \text{H}_2\text{O} + h\nu \rightarrow \text{H} + \text{OH} \\ (\text{R5}) & \text{H}_2\text{O}_2 + h\nu \rightarrow \text{OH} + \text{OH} \\ (\text{R6}) & \text{NO}_2 + h\nu \rightarrow \text{O}(^3\text{P}) + \text{NO} \\ (\text{R7}) & \text{NO}_3 + \frac{1}{2} = - \text{NO} = - \text{O}(^3\text{P}) \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	tinued)			
	erogeneous reactions included in th	ne SACADA reaction s	cheme. The	notation "(c))"
(R10) N_2O_5 + indicates a speci (R11) HNO ₃ .	es in the condensed (liquid or solid)	phase. The term "produ	cts" represent	s constituen	ts O+NO ₂
(R13) $Cl_2O_2 + which are not co$	onsidered in the reaction scheme.				\mathcal{D}_2
R14) $Cl_2 + h$ Reaction R15) OCIO +		Uptake coefficient			I I+HO ₂
(R16) HCl + /		liquid/STS	NAT	ice	+NO ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$NO_{2} + H_{2}O(c) \rightarrow HOBr + HNO_{3}$ $NO_{2} + H_{2}O(c) \rightarrow HNO_{3} + HNO_{3}$ $NO_{2} + H_{2}O(c) \rightarrow HNO_{3} + HOCl$ $NO_{2} + HCl(c) \rightarrow Cl_{2} + HNO_{3}$ $Cl + HCl(c) \rightarrow Cl_{2} + H_{2}O$ $D_{5} + HCl(c) \rightarrow HNO_{3} + products$ $Br + HCl(c) \rightarrow BrCl + H_{2}O$ $NO_{2} + HBr(c) \rightarrow BrCl + HNO_{3}$ $Cl + HBr(c) \rightarrow BrCl + H_{2}O$ $NO_{2} + HCl(c) \rightarrow BrCl + HNO_{3}$ $Cl + HBr(c) \rightarrow BrCl + HNO_{3}$ $Cl + HBr(c) \rightarrow BrCl + HNO_{3}$ $Cl + HBr(c) \rightarrow BrCl + HNO_{3}$ $DO_{2} + HCl(c) \rightarrow BrCl + HNO_{3}$ $DO_{2} + HCl(c) \rightarrow BrCl + HNO_{3}$ $DO_{2} + HCl(c) \rightarrow BrCl + HNO_{3}$ $DO_{3} + HCl(c) \rightarrow BrCl + HNO_{3}$ $DO_{4} + HCl(c) \rightarrow BrCl + HNO_{3}$ $DO_{5} + HCl(c) \rightarrow BrCl + HO_{5} + HCl(c)$	$ \begin{array}{c} f(t, p_{H_2O})^a \\ f(t, p_{H_2O})^a \\ f(t, p_{H_2O}, p_{HCl})^b \\ f(t, p_{H_2O}, p_{HCl})^b \\ f(t, p_{H_2O}, p_{HCl})^b \\ \hline 0.01 \\ \hline 0.3 \end{array} $	- 0.0004 0.2 0.1 0.003 - 0.3 -	$\begin{array}{c} 0.26 \\ 0.02 \\ 0.3 \\ 0.2 \\ 0.03 \\ 0.3 \\ 0.3 \\ 0.05 \\ 0.3 \end{array}$	$\begin{array}{c} +CH_{3} \\ 1+HCO \\ +CI0 \\ +Cl_{2}+O_{2} \\ +OH \\ 1+CI0 \\ Cl_{2}+NO_{3} \\ NO_{2} \\ +NO_{2}+O_{2} \\ CH_{3}O+CI+O \\ +OCIO \\ +O_{2} \\ -CI+O_{2} \\ r+OH \\ +OH \\ +OH \\ +OH \\ +OH \\ +BrO \\ HO_{2} \end{array}$
(R35) $N_2O_5 + D$. Shift et al. [200 (R36) $CH_2O + h\nu \rightarrow H + HCO$ (R37) $CH_2O + h\nu \rightarrow H_2 + CO$	$\begin{array}{cccc} (R71) & OH+HO_2 \rightarrow H_2(R105) \\ (R72) & OH+H_2O_2 \rightarrow H(R106) \\ (R73) & HO_2+O_3 \rightarrow OH(R107) \\ (R74) & HO_2+HO_2 \rightarrow H(R108) \\ (R75) & NO_2+O(^3P) \rightarrow (R110) \\ \hline & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} \text{Cl0+OH} \rightarrow \text{Cl+HO}_2 \\ \text{Cl0+OH} \rightarrow \text{HCl+O}_2 \\ \text{OCl0+OH} \rightarrow \text{HOCl+O}_2 \\ \text{HCl+OH} \rightarrow \text{Cl+H}_2\text{O} \\ \text{HOCl+OH} \rightarrow \text{Cl0+H}_2\text{O} \\ \text{ClONO}_2 + \text{OH} \rightarrow \text{HOCl+NO}_3 \\ \text{Cl}_3\text{Cl+OH} \rightarrow \text{H}_2\text{O} \\ \text{CHF}_2\text{Cl+OH} \rightarrow \text{H}_2\text{O} \\ \text{CHF}_2\text{Cl+OH} \rightarrow \text{H}_2\text{O} \\ \text{CHF}_2\text{Cl}_3 + \text{OH} \rightarrow \text{H}_2\text{O} \\ \text{Cl+HO}_2 \rightarrow \text{HCl+O}_2 \\ \text{Cl+HO}_2 \rightarrow \text{OH+ClO} \end{array}$	(R141) (R142) (R143) (R144) (R145) (R146) (R147) (R148) (R149) (R150) (R151) (R152)	$\begin{array}{c} Br+HO_2 \rightarrow H\\ BrO+HO_2 \rightarrow \\ Br+O_3 \rightarrow BrC\\ CH_2O+Br \rightarrow \\ Br+OCIO \rightarrow I\\ BrO+NO \rightarrow E\\ BrO+CIO \rightarrow I\\ BrO+CIO \rightarrow I\\ BrO+CIO \rightarrow I\\ BrO+BrO \rightarrow I\\ O(^3P)+O_2 \rightarrow \\ N_+O(D) \rightarrow $	HOBr+O ₂)+O ₂ HBr+HCO Br0+ClO Br0+ClO Br+O2 Br+Cl+O ₂ Br+Cl+O ₂ BrCl+O ₂ Br+Br+O ₂ O ₃

Contents

- 1. Introduction
- 2. What needs to be observed? Critical photochemistry
- 3. When can emissions be quantified?
- 4. A practical approach for full fledged CTMS
- 5. Conclusions

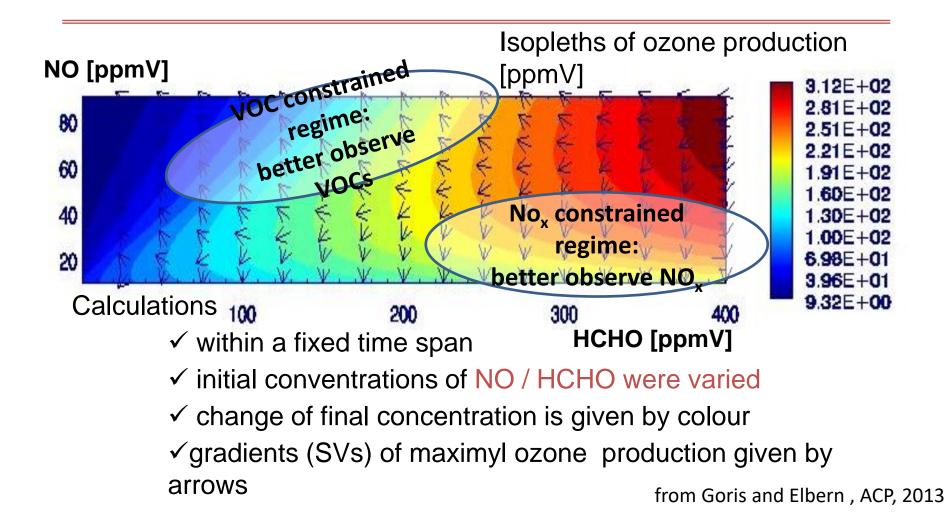
How can the observation configuration be optimized?

Given CTM (here RACM and EURAD-IM)
acting as tan.-lin. model operator
$$\mathcal{L}$$
: $\delta \mathbf{c}(t_F) = \mathcal{L}_{t_I,t_F} \delta \mathbf{c}(t_I), \quad \mathcal{L}_{t_I,t_F} = \frac{\partial \mathcal{M}_{t_I,t_F}}{\partial \mathbf{c}} \Big|_{\mathbf{c}(t_I)}$ **1. Berliner et al., (1998) Statistical design:**
"Minimize" the analysis error
covariance matrix A (say, via trace): $\min \mathbf{A} = \mathbf{B} - \underbrace{\mathbf{BH}^T(\mathbf{HBH}^T + \mathbf{R})^{-1}\mathbf{HB}}_{\text{to be maximized by H}}$ For this find maximal eigenvectors
as observation operators H,
which configure observations. $\mathcal{L}_{t_I,t_F}\mathbf{B}\mathcal{L}_{t_I,t_F}^T\mathbf{H}^T = \lambda\mathbf{H}^T$ **2. Palmer (1995) Singular vector analysis:**
Observe maximal SV configuration: $\max \frac{\|\delta \mathbf{c}(t_F)\|_B^2}{\|\delta \mathbf{c}(t_I)\|_B^2} = \max_{\delta \mathbf{c}(t_I)} \frac{\delta \mathbf{c}(t_I)^T \mathcal{L}_{t_I,t_F}^T\mathbf{B} \mathcal{L}_{t_I,t_F} \delta \mathbf{c}(t_I)}{\delta \mathbf{c}(t_I)^T\mathbf{B} \delta \mathbf{c}(t_I)},$

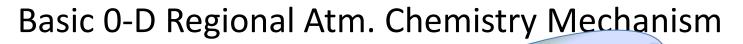

A prototype non-linearity example: Ozone production from NOx and VOCs

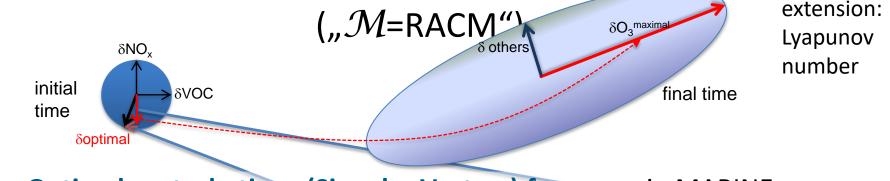
Empirical Kinetic Model Approach scheme

•Nitrogene oxides and numerous hydrocarbons act highly nonlinearly as precursors of ozone.

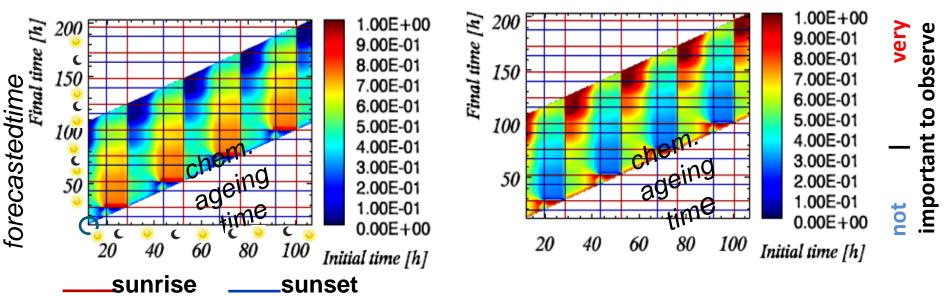

•Chemical conditions are either controlled by NOx or VOC deficit, delineating the "chemical regime".

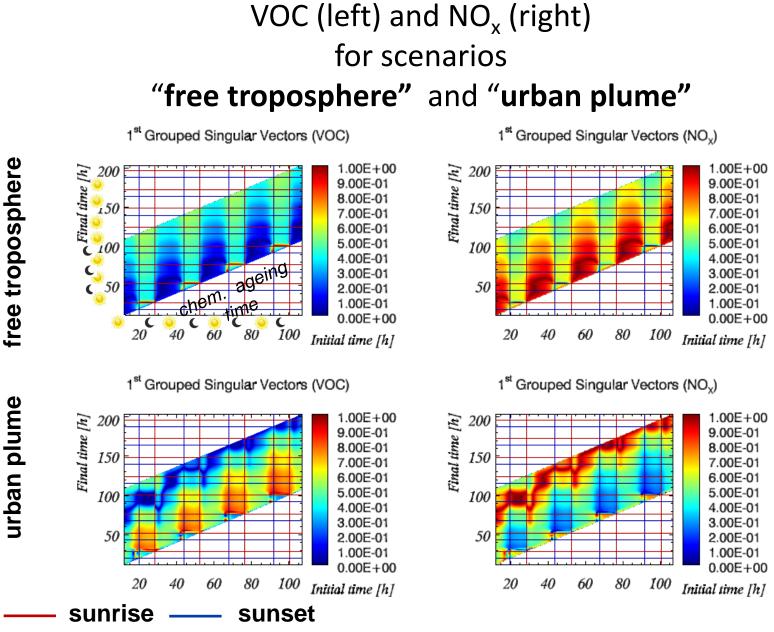
•Both 4D-var and Kalman filter should start with the proper chemical regime.




2. What should be observed?

Is NO_x always <u>the</u> controlling key to ozone production? And consequently, its observation the key to better forecast?


What should be observed?


Optimal perturbations (Singular Vectors) for scenario MARINE

1st Grouped Singular Vectors (δ VOC)

Goris and Elbern, ACP, 2013

1st Grouped Singular Vectors (δNO_x)

SV components for initial values

from Goris and Elbern, ACP, 2013

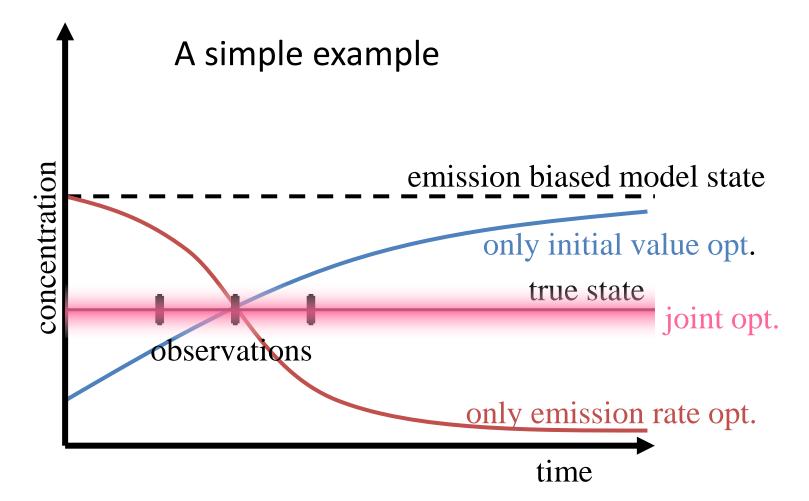
Contents

- 1. Introduction
- 2. What needs to be observed?
- 3. When/where can emissions be quantified?
- 4. A practical approach for full fledged CTMS
- 5. Conclusions

In the troposphere, for **emission rates**, the product (*paucity of knowledge*importance*) is high

Emission Rate Optimization

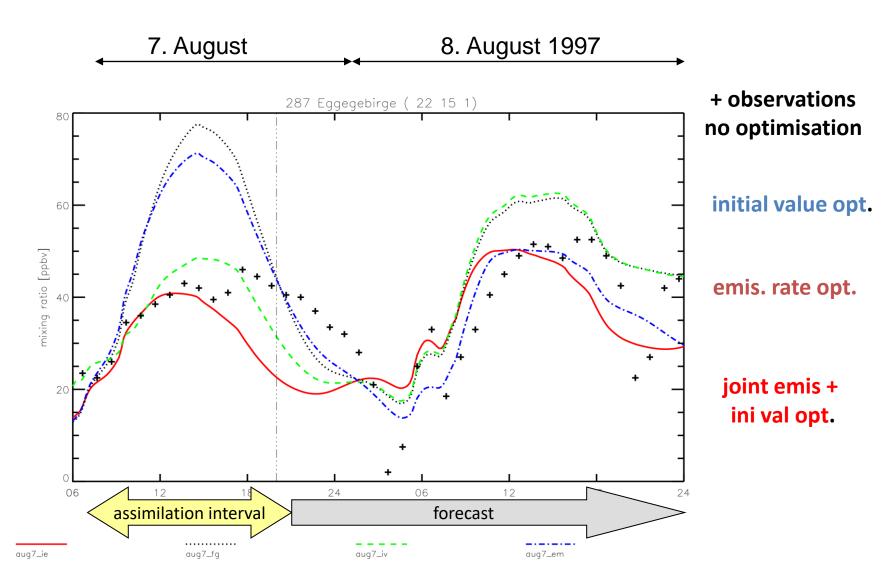
minimize cost function


$$J(\mathbf{x}(t_0), \mathbf{e}) = \frac{1}{2} (\mathbf{x}^b(t_0) - \mathbf{x}(t_0))^T \mathbf{B}_0^{-1} (\mathbf{x}^b(t_0) - \mathbf{x}(t_0)) + \frac{1}{2} \int_{t_0}^{t_N} (\mathbf{e}_b(t) - \mathbf{e}(t))^T \mathbf{K}^{-1} (\mathbf{e}_b(t) - \mathbf{e}(t)) dt + \frac{1}{2} \int_{t_0}^{t_N} (\mathbf{y}^0(t) - H[\mathbf{x}(t)])^T \mathbf{R}^{-1} (\mathbf{y}^0(t) - H[\mathbf{x}(t)]) dt$$

deviations from background initial state deviations from a priori emission rates

model deviations from observations

- $\mathbf{x}^{b}(t_{0})$ background state at t = 0
- $\mathbf{x}(t)$ model state at time t
- $\mathbf{e}_b(t_0)$ background emission rate at t = 0
- $\mathbf{e}(t)$ emission rate field at time t
- **K** emission rate error covariance matrix
- H[] forward interpolator
- $\mathbf{y}^0(t)$ observation at time t
- \mathbf{B}_0 background error covariance matrix


What should we optimise, only state variables? What should be best observed?

Is this achievable within a limited time intervall?

An example from air quality inversion

Semi-rural measurement site Eggegebirge

Can a finite assimilation window suffice to estimate emissions?

A prepended safeguarding study

Wu, Xueran, B. Jacob, and H. Elbern: Optimal control and observation locations for time-varying systems on a finite-time horizon, SIAM J. Control Optim., **54**, 291-316 , 2016.

• <u>Result:</u>

For time-varying systems in Hilbert spaces, the existence and convergence of the optimal locations based on the linearquadratic control on a **finite-time horizon** is demonstrated subject to conditions.

• <u>Approach</u>:

The optimal location of observations for improving the estimation of the state at the final time is considered as the **dual problem to the LQ optimal problem of the control locations**. (Kalman smoother and filter)

Is the information needed available?

Observation location impact assessment on parameter optimisation by Ensemble Kalman Smoother

We seek to infer **normalised sensitivity maps**, which exhibit the control capacity of observations on parameters to be optimised: here *emission rates* and *initial values*

Extended model with emission rates $\begin{pmatrix}
\delta c(t) \\
\delta e(t)
\end{pmatrix} =
\begin{pmatrix}
M(t,t_0) & \int_{t_0}^t M(t,s)M_e(s,t_0)ds \\
0 & M_e(t,t_0)
\end{pmatrix}
\begin{pmatrix}
\delta c(t_0) \\
\delta e(t_0)
\end{pmatrix} \cdot extended state vector concentrations emissions$

Typically, there is no direct observation for emissions.

$$\delta y(t) = [H(t), 0_{n \times n}] \left(\begin{array}{c} \delta c(t) \\ \delta e(t) \end{array}\right) + \nu(t), \tag{2}$$

where $0_{n \times n}$ is a $n \times n$ matrix with zero elements.

from Wu et al., GMDD, 2017

(formally made

prognostic)

Is the information needed available?

observability Gramian: Exhibiting the control capacity of observations on parameters to be optimised

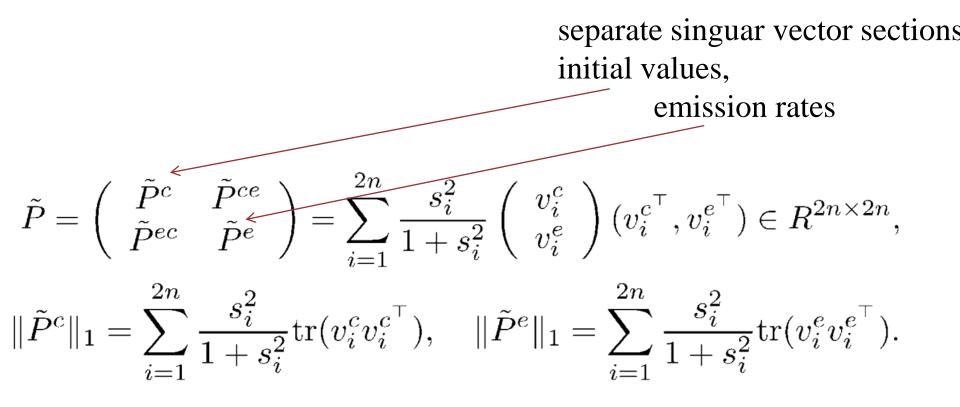
Here, infer normalised sensitivity maps, for emission rates and initial values

Costly:

calculate the **observability Gramian** matrix (control theory) by forward and adjoint model M, observation operators H, and observation error covariance matrix.

$$\mathcal{G} = \begin{pmatrix} H(t_0)M(t_0, t_0) \\ H(t_1)M(t_1, t_0) \\ \vdots \\ H(t_N)M(t_N, t_0) \end{pmatrix}, \rightarrow \mathcal{G}^{\mathcal{T}\mathcal{R}\mathcal{G}}$$

from Wu et al. 2019

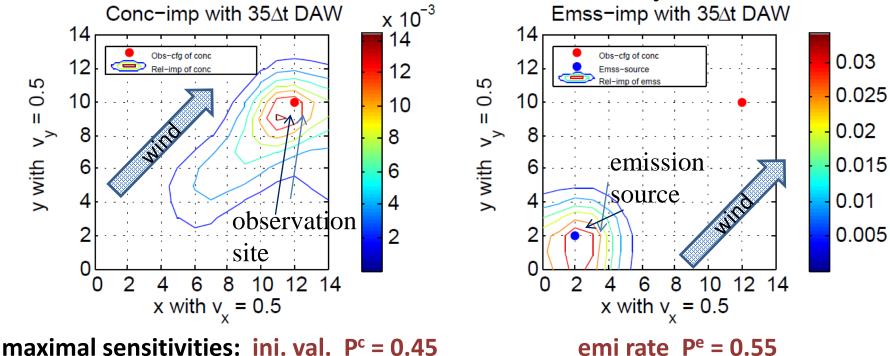

Is the information needed available? Degree of Freedom for Signal (DFS)

Define the *relative improvement covariance matrix* (scaled forecast – analysis error covariance matrix from KS)

$$\begin{split} \tilde{P} &= P^{-\frac{1}{2}}(t_0|t_{-1})(P(t_0|t_{-1}) - P(t_0|t_N))P(t_0|t_{-1}) \\ &= I - (I + P^{\frac{1}{2}}(t_0|t_{-1})\mathcal{G}^{\top}\mathcal{R}^{-1}\mathcal{G}P^{\frac{1}{2}}(t_0|t_{-1}))^{-1} \\ &= I - (I + VSS^{\top}V^{\top})^{-1} = \dots = \\ &= V(I - (I + SS^{\top})^{-1})V^{\top} \qquad \text{singular value } s_i \\ &= \sum_{i=1}^r \frac{s_i^2}{1 + s_i^2} v_i v_i^{\top}, \qquad \qquad \text{decomposition} \end{split}$$

Is the information needed available?

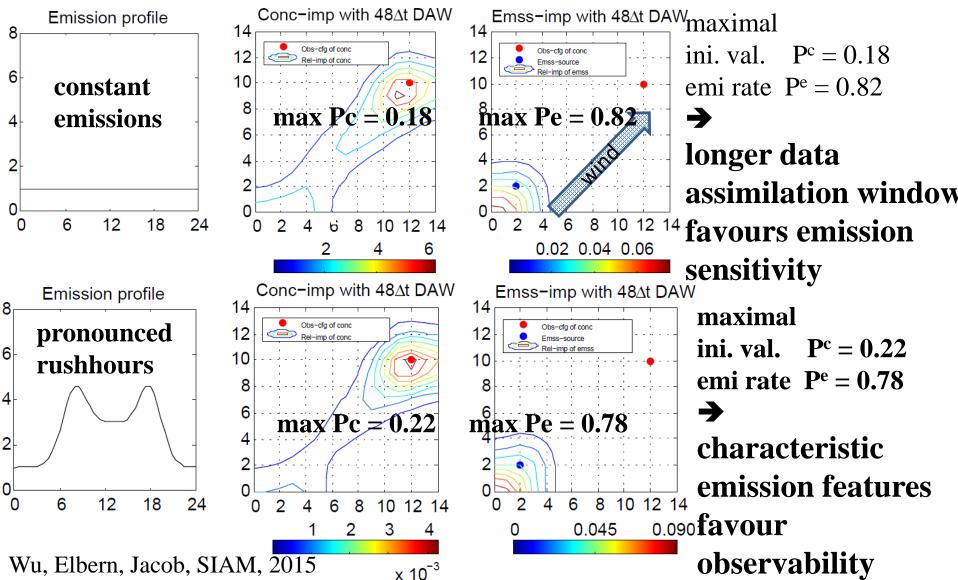
Degree of Freedom for Signal (DFS) Separation in terms of initial values and emission rates


from Wu et al. 2019

Is the information needed available? Sensitivity by partial singular vectors a simple example

Given:

1 observation site 1 windward emission source location assimilation window: advection time source \rightarrow observation (35 units) *Question:*


can **both** initial values and emission rates be analysed?

Answer: Yes, both sensitivities are of same order

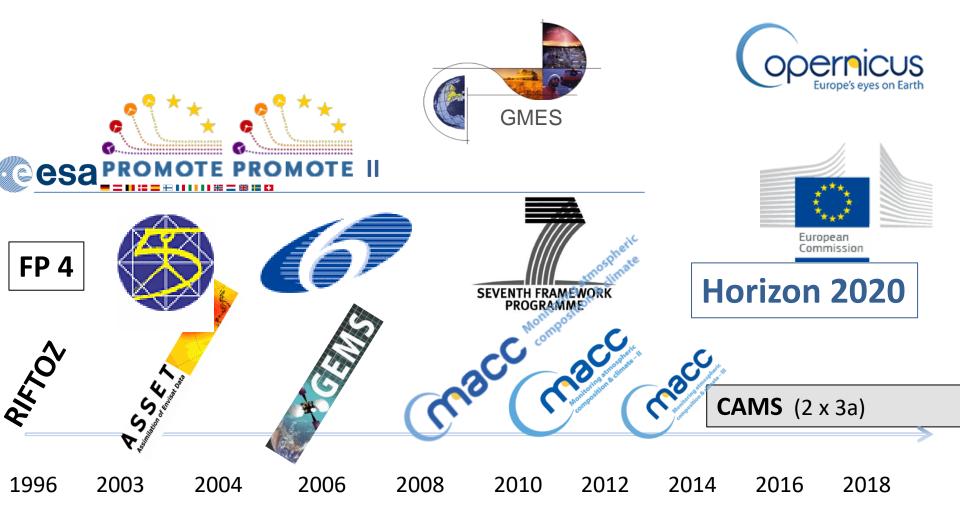
from Wu et al. 2019

4. Is the information needed available? Sensitivity by partial singular vectors emision variation + 48 time units

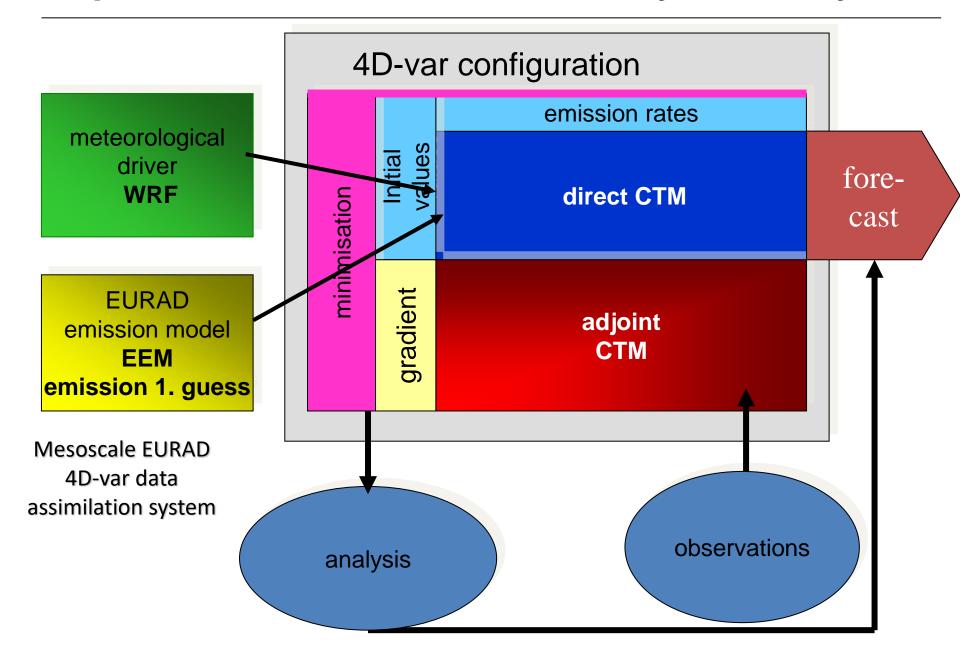
Contents

- 1. Introduction
- 2. What needs to be observed?
- 3. When can emissions be quantified?

4. A practical approach for full fledged CTMS

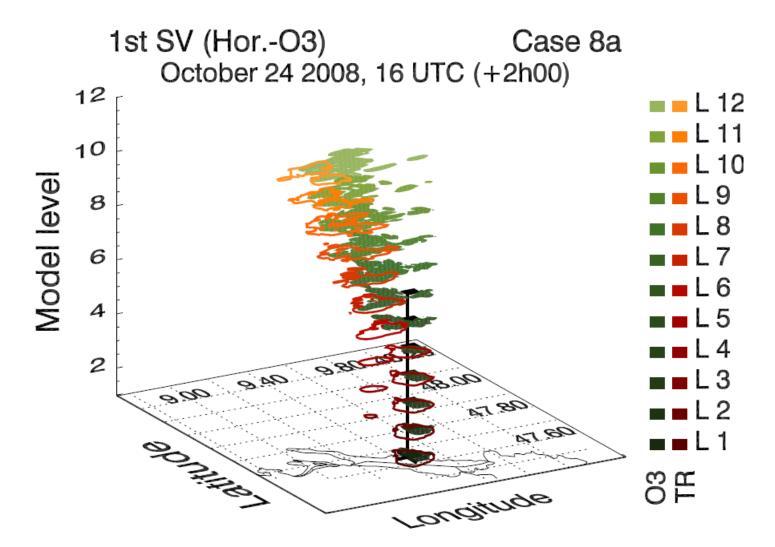

5. Conclusions

ZEPTER-2 campaign


- ZEPpelin based Tropospheric photochemical chemistry expERiment:
- 17.10.2008 08.11.2008
- In-situ obs OH, O₃, HONO, NO, NO₂, CO,...
- 25 flights in 100 km diametre around Friedrichshafen (southern Germany)
- soundings of vertical profiles

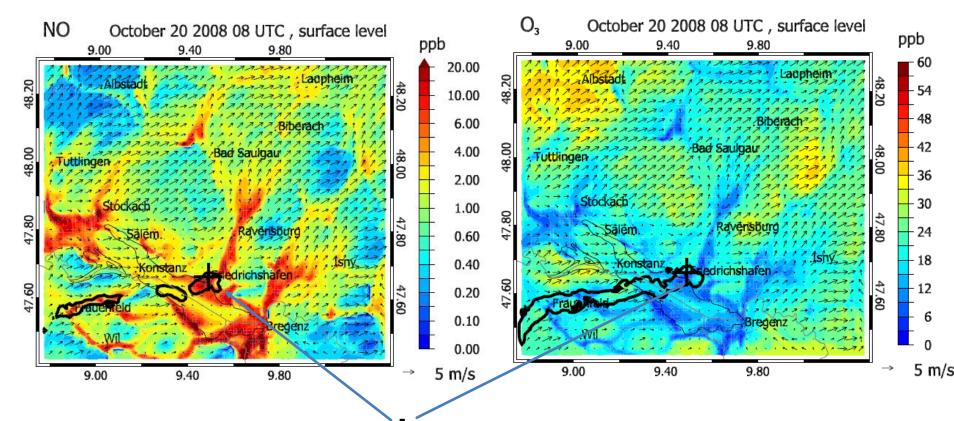
EURopean Air pollution Disperion- Inverse Model

Involved in chemistry data assimilation directed European activities



Components of EURAD-IM chemistry 4D-var system

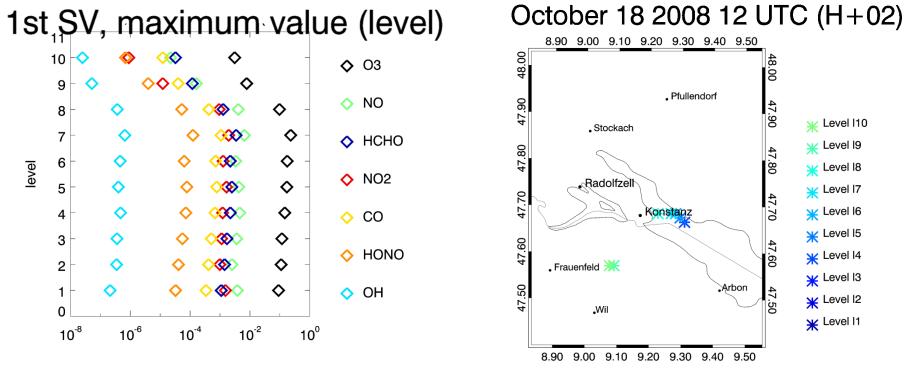
Where should be observed?



from Goris and Elbern, GMD, 2015

Where should be observed?

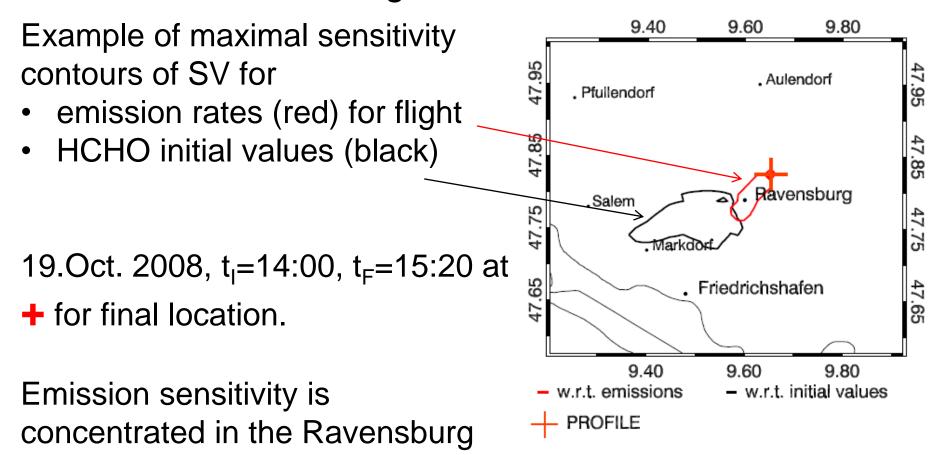
SV optimal placement of observation sites (soveld by PARPACK)



Optimal forecast target place +

Initial concentrations and optimal horizontal placement of NO (left) and O3 (right) at surface level . Isopleths of the optimal horizontal placement: black . from Goris and Elbern , GMD, 2015

What is important to observe for better O_3 prediction? $\delta O_3 > \delta H C H O > \delta C O > \delta H O N O > \delta O H$


with NO and NO₂ typically varying between $\delta O_3 > \delta NO_x > \delta HONO$ dependent on the specific chemical scenario.

Orders of magnitude of different compounds (left) and position of

maximal values (right) of maximal singular vector entries apres model to the sis 2011)

Where should be observed? Where is it important to observe for O_3 prediction?

urban area (inverse airshed).

(from Nadine Goris, PhD thesis 2011)

- 1. Introduction
- 2. What needs to be obseved?
- 3. When can emissions be quantified?
- 4. A practical approach for full fledged CTMS
- 5. Conclusions

General conclusions/suggestions for future observation network design

- Objective quantification algorithms prove their worth (as in meteorology, rather than qualitative EBAS special stations: Jungfraujoch
- Aspire better observability of uncertain atmospheric forcing mechanisms (rather than only state observations)
 Attention: being driven by the weather, chemistry network optimization is situation dependent (wind direction, chemical ageing)

THANK YOU FOR YOUR ATTENTION