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Uncertainty Quantification

Better air quality model forecast = better informed decision
making.

Scientists who build the models are not the decision makers.
Error bars are not enough for confidence information



Uncertainties

« Aleatoric Uncertainties
due to the intrinsic randomness of a system or phenomenon,
cannot be reduced even with complete knowledge and understanding

« Epistemic Uncertainty

due to lack of knowledge or understanding of a system, can
be reduced by obtaining more information or improving the
understanding of the system



Uncertainty Quantification with Polynomial Chaos
Method for a 3D Air Quality Model

Sulfur Transport Eulerian Model (STEM):
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Represent second order processes as series expansion in the basis of
orthogonal polynomials:
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In practice, number of terms in PC expansion:
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n — number of uncertainties. p — maximum degree of polynomials.

Random variables £ | Orthogonal polynomials (&) Support
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Source of Uncertainties

& — No, ground emission (NO,NO2) (-20%--+20%)

&, - Avocground emission (HCHO,ALK,OLE,ARO) (-50%--+50%)

£, — BVOC ground emission (ISOPRENE, TERPENE, ETHENE) (-40%--+40%)
&, — Deposition velocity for Ozone (-50%--+50%)

£, — Deposition velocity for NO2 (-50%--+50%)

&, — West boundary condition for ozone (-5%--+5%)

£, — West boundary condition for PAN (-5%--+5%)

e 7 independent Beta distributed random variables
(Jacobi polynomial of order 2 is used).
* Uncertainties in emissions, B.C., and deposition velocity .



Uncertainty Quantification with PC
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Figure: Boston average ozone PDF (68% of exceeding 75 ppbv).



Uncertainty Apportionment with PC
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Separate the terms corresponding to the linear terms from the

higher order terms:
d
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(a))(®d', @) in the linear portion is the part of the total variance
sg2 that can be attributed to the i-th source of uncertainty
(modeled by variable &;). The higher order terms represent the
mixed contribution resulting from the interaction of multiple

sources.



Uncertainty Apportionment with PC
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Uncertainty Apportionment with PC
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Uncertainty Reduction with Data Assimilation
(variational or sequential? )

obs
2 forecast
obs i P
---------- obs i> analysis
obs
t0 Assimilation window tf
analysis
*
*
* obs
forecast *
time

Assimilation frequency is controlled by data availability



How about Variational + Sequential?

« Update and correct error covariance matrix at the end
of each assimilation window by investigating 4D-Var
error reduction directions

 Run a short window 4D-Var and use that information
to initialize EnKF

Cheng, H., Jardak, M., Alexe, M., & Sandu, A. (2010). Sandu, A., & Cheng, H. (2015).



Hybrid Particle Filter

* Introduce Particle Swarm Optimization (PSQO) as an
auxiliary procedure to alleviate the “particle
degeneration” problem.

Schmal, K., & Cheng, H. (2015



| thought | had a better understanding of
somewhat complex mathematical models until .....



Building a Model from Data only?



Computational Science - Data Science

Compz_xtauonal @ %,3
_ Science & % o E
Applle d Q Machine
I - - \Q Learning ‘b/ Q’
Discipline oF Sy,
: ‘
Computer Mathematics Substantive

Science Expertise



Machine Learning

« A subset of Artificial Intelligence (Al).
* The core of Data Science (DS)

» Algorithms that use data to learn, then use what was
learned to make predictions.



Machine Learning Timeline

ARTIFICIAL
INTELLIGENCE
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1950’s 1960's 1970’s 1980’s 1990’s 2000’s 2010’s

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine learning — have created ever larger disruptions.

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/



https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

Machine Learning Algorithms

Supervised — data is labeled

Unsupervised — data is unlabeled, discover hidden
structure

Semi-supervised — data is partially labeled

Reinforced — interact with environment, use reward
feedback to learn best action



classification scikit-learn
algorithm cheat-sheet
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Deep Learning

« An advancement/subclass of machine
learning

« Extracts features automatically using multiple-
layer hidden neural networks

* Requires powerful hardware and long time to
train models



Simple Neural Network Deep Learning Neural Network
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Machine Learning

oty 35

Input Feature extraction Classification Output

Deep Learning
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Input Feature extraction + Classification Output

https://www.xenonstack.com/blog/log-analytics-deep-machine-learning/



https://www.xenonstack.com/blog/log-analytics-deep-machine-learning/

Computational Scientists:

Build mathematical models to represent underlying physics
or chemistry

(Data Sparse -> Data Abundance)

Statistician / Data Scientists

Build statistical models or ML models from data
Use models to predict (make inferences or

decisions)



Physical model vs. Data Model

!

Physical model + Data Model



Large Amount of Historic Data in Atmospheric
Research

weather forecast
climate model
air quality model
remote sensing

Observation data + Simulation Data

=» learn patterns and correlations=» improve short-
term forecast



Traditional ML Process

1. Data collection and preparation (clean, normalize,
preprocessing, missing data handling, transformation,
smoothing)

Exploratory Data Analysis (EDA)

Feature extraction and selection (e.g. PCA)

Model selection (regression, decision trees, random
forests, neural network)

Model training (parameter optimization)

Model evaluation

Model tuning

Document and launch

ONOOT RWN



Scientific Machine Learning for Complex Models

» Use ML for parameter estimation

Use ML to speed up scientific applications
Use ML to help optimal design

Automatic hypothesis generation
Accelerated scientific simulation



Physics Informed Machine Learning

« Data-driven solutions of nonlinear PDEs

* Physics informed neural network

» Data-efficient universal function approximators that
encode any underlying physical laws as prior
information

* Physics-informed surrogate models that are fully
differentiable with respect to all input coordinates and

free parameters



Encoder-operator-decoder neural network

Inputs Encoder Operator Decoder Outputs
. ..:LI :LI

At =1 time step

Chemical compressed compressed Chemical
species features features species
P —— B —— R —— s

Compressed features recurrently fed into
operator t = [1, z1] times with Met; concatenated A A
CO X to inputs at each step and Encoder(Noiser) X1, ony Xz C1 y many Cz
added to outputs after each step

Kelp, Makoto M., et al. "Toward stable, general machine-learned models of the atmospheric chemical system."
Journal of Geophysical Research: Atmospheres 125.23 (2020): e2020JD032759.



Deep Probabilistic Koopman
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Mallen, Alex, Henning Lange, and J. Nathan Kutz. "Deep probabilistic Koopman: long-term time-series
forecasting under periodic uncertainties." arXiv preprint arXiv:2106.06033 (2021).
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Diagram of our deep learning schema to identify Koopman eigenfunctions ¢(x). a Our network is based on a deep auto-encoder, which is able to identify
intrinsic coordinates y = ¢(x) and decode these coordinates to recover x = ¢~X(y). b, ¢ We add an additional loss function to identify a linear Koopman
model K that advances the intrinsic variables y forward in time. In practice, we enforce agreement with the trajectory data for several iterations through the

dynamics, i.e. K™. In b, the loss function is evaluated on the state variable x and in c it is evaluated on y

Lusch, Bethany, J. Nathan Kutz, and Steven L. Brunton. "Deep learning for universal linear embeddings of
nonlinear dynamics." Nature communications 9.1 (2018): 4950.



Z(t +At)

T(6) : Affine transformation
® : Bi-linear interpolation
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Localization Network
Chattopadhyay, Ashesh, et al. "Towards physics-inspired data-driven weather forecasting: integrating data

assimilation with a deep spatial-transformer-based U-NET in a case study with ERA5."
Geoscientific Model Development 15.5 (2022): 2221-2237.



Resolved physics - Ohserved

(PBM) ‘eled paysics bivaios = f +

Blakseth, Sindre Stenen, et al. "Combining physics-based and data-driven techniques for reliable hybrid
analysis and modeling using the corrective source term approach." Applied Soft Computing 128 (2022):
109533.
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Universal differential equation
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Rackauckas, Christopher, et al. "Universal differential equations for scientific machine learning." arXiv preprint
arXiv:2001.04385 (2020).



* Multidisciplinary
* Interdisciplinary
 Transdisciplinary

Collaboration



Thank you!



