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Chemical Transport Model



Uncertainty Quantification

• Better air quality model forecast è better informed decision 
making. 

• Scientists who build the models are not the decision makers. 
• Error bars are not enough for confidence information



Uncertainties
• Aleatoric Uncertainties

due to the intrinsic randomness of a system or phenomenon, 
cannot be reduced even with complete knowledge and understanding

• Epistemic Uncertainty
due to lack of knowledge or understanding of a system, can 

be reduced by obtaining more information or improving the 
understanding of the system



Uncertainty Quantification with Polynomial Chaos 
Method for a 3D Air Quality Model 





Source of Uncertainties



Uncertainty Quantification with PC



Uncertainty Apportionment with PC



Cheng, H., & Sandu, A. (2009) 

Uncertainty Apportionment with PC



Uncertainty Apportionment with PC



Uncertainty Reduction with Data Assimilation 
(variational or sequential? )

Assimilation frequency is controlled by data availability



• Update and correct error covariance matrix at the end 
of each assimilation window by investigating 4D-Var 
error reduction directions

• Run a short window 4D-Var and use that information 
to initialize EnKF

How about Variational + Sequential? 

Cheng, H., Jardak, M., Alexe, M., & Sandu, A. (2010). Sandu, A., & Cheng, H. (2015). 



• Introduce Particle Swarm Optimization (PSO) as an 
auxiliary procedure to alleviate the “particle 
degeneration” problem.

Hybrid Particle Filter

Schmal, K., & Cheng, H. (2015



I thought I had a better understanding of 
somewhat complex mathematical models until …..



Building a Model from Data only? 



Computational Science à Data Science



Machine Learning

• A subset of Artificial Intelligence (AI).

• The core of Data Science (DS)

• Algorithms that use data to learn, then use what was 
learned to make predictions. 



Machine Learning Timeline

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/


Machine Learning Algorithms

• Supervised – data is labeled  

• Unsupervised – data is unlabeled, discover hidden 
structure 

• Semi-supervised – data is partially labeled 

• Reinforced – interact with environment, use reward 
feedback to learn best action





Deep Learning

• An advancement/subclass of machine 
learning

• Extracts features automatically using multiple-
layer hidden neural networks

• Requires powerful hardware and long time to 
train models





https://www.xenonstack.com/blog/log-analytics-deep-machine-learning/

https://www.xenonstack.com/blog/log-analytics-deep-machine-learning/


Computational Scientists:

Build mathematical models to represent underlying physics 
or chemistry

(Data Sparse -> Data Abundance)

Statistician / Data Scientists
Build statistical models or ML models from data

Use models to predict (make inferences or 
decisions)



Physical model vs. Data Model 

Physical model + Data Model 



• weather forecast
• climate model
• air quality model
• remote sensing 

Observation data + Simulation Data

è learn patterns and correlationsè improve short-
term forecast

Large Amount of Historic Data in Atmospheric 
Research



1. Data collection and preparation (clean, normalize, 
preprocessing, missing data handling, transformation, 
smoothing)

2. Exploratory Data Analysis (EDA)
3. Feature extraction and selection (e.g. PCA)
4. Model selection (regression, decision trees, random 

forests, neural network)
5. Model training (parameter optimization)
6. Model evaluation
7. Model tuning
8. Document and launch 

Traditional ML Process 



• Use ML for parameter estimation
• Use ML to speed up scientific applications
• Use ML to help optimal design
• Automatic hypothesis generation
• Accelerated scientific simulation

Scientific Machine Learning for Complex Models



• Data-driven solutions of nonlinear PDEs
• Physics informed neural network
• Data-efficient universal function approximators that 

encode any underlying physical laws as prior 
information

• Physics-informed surrogate models that are fully 
differentiable with respect to all input coordinates and 
free parameters

Physics Informed Machine Learning



Encoder-operator-decoder neural network

Kelp, Makoto M., et al. "Toward stable, general machine-learned models of the atmospheric chemical system."
Journal of Geophysical Research: Atmospheres 125.23 (2020): e2020JD032759.



Deep Probabilistic Koopman
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Universal differential equation 



• Multidisciplinary
• Interdisciplinary
• Transdisciplinary

Collaboration 



Thank you!


