Differentiability of shape functions for directed polymers in continuous space

Yuri Bakhtin joint work with Douglas Dow

Courant Institute, NYU

BIRS 2023

Optimal paths in random environments (zero temperature)

$$A_{\omega}(x,y) = \inf \left\{ A_{\omega}(\gamma) \mid \text{ admissible } \gamma : x \rightsquigarrow y \right\}$$

Shape function

$$\Lambda(v) = \lim_{T \to \infty} \frac{1}{T} A_{\omega}(0, Tv)$$

or

$$\Lambda(v) = \lim_{n \to \infty} \frac{1}{n} A_{\omega}(0, x_n), \quad \frac{x_n}{n} \to v.$$

Exact shape functions (including the temperature > 0 case)

- Corner growth, i.i.d. exponential weights: Rost (1981)
- (generalized) Hammersley process: Hammersley (1972), Aldous, Diaconis (1995), Cator, Pimentel (2011)
- Euclidean FPP: Howard, Newman (1997)
- O'Connell-Yor polymers: Baryshnikov (2001), Gravner, Tracy, Widom (2001), Hambly, Martin, O'Connell (2002), Moriarty, O'Connell (2007)
- Log-gamma polymers: Seppäläinen (2012)
- Burgers equation, quadratic *L*: Bakhtin, Cator, Khanin (2014), Bakhtin (2016), Bakhtin, Li (2019)
- KPZ equation: Janjigian, Rassoul-Agha, Seppäläinen (recent)

Shape function

- Always convex
- In all explicit examples, differentiable and strictly convex
- Strict convexity would imply existence-uniqueness of one-sided geodesics and infinite volume polymer measures (thermodynamic limits) with a given slope, and even just differentiability allows to make pretty strong claims in that direction [Janjigian, Rassoul-Agha, Seppäläinen 2020,2022]
- Differentiability at the edge of the percolation cone for lattice FPP, LPP [Auffinger, Damron 2013].

This talk:

Several classes of models where the shape function is not known precisely but differentiability holds:

- continuous space directed polymers
 - zero temperature
 - positive temperature

homogenization in HJB equations with dynamic environments.

Shear invariant case (Burgers/KPZ type models)

Poissonian points in space-time $\mathbb{R} \times \mathbb{R}$:

[Bakhtin, Cator, Khanin 2014]

Shear invariant case (Burgers/KPZ type models)

$$A^{0,T}(\gamma) = \int_0^T \dot{\gamma}(t)^2 dt - \#\{\text{Poisson points on }\gamma\}$$

If $\gamma(0) = \gamma(T) = 0$ and $\Xi_v \gamma(t) = \gamma(t) + vt$, then

$$\begin{split} &\int_0^T \left(\frac{d}{dt}\Xi_v\gamma(t)\right)^2 dt \\ &= \int_0^T (\dot{\gamma}(t)+v)^2 dt \\ &= \int_0^T \dot{\gamma}(t)^2 dt + 2v \int_0^T \dot{\gamma}(t) dt + \int_0^T v^2 dt \\ &= \int_0^T \dot{\gamma}(t)^2 dt + Tv^2. \end{split}$$

PPP is distributionally invariant under Ξ_v , so $\Lambda(v) = \Lambda(0) + v^2$.

Several other shear invariant models

$$A(\gamma) = \sum_{k} (\gamma_{k+1} - \gamma_k)^2 + \sum_{k} F_k(\gamma_k),$$

where F_k are i.i.d. in time and stationary in space [Bakhtin, 2016], or simply

$$A(\gamma) = \sum_{k} (\gamma_{k+1} - \gamma_k)^2$$

but require γ_k to coincide with one of the Poisson points on $\{k\} \times \mathbb{R}$.

Trees of minimizers

paths minimizing

$$A = \sum (\gamma_{k+1} - \gamma_k)^2$$

for various endpoints.

Limit shape

A point is shown in black if there is a path to that point with

$$A = \sum_{i=1}^{n} (\gamma_i - \gamma_{i-1})^2 < \mathbf{20}$$

Limit shape

A point is shown in black if there is a path to that point with

$$A = \sum_{i=1}^{n} (\gamma_i - \gamma_{i-1})^2 < 400$$

The boundary of the limit shape is an ellipse

$$x^2 + C\left(t - \frac{1}{2C}\right)^2 = \frac{1}{4C}$$

with $C = \Lambda(0)$.

$$A(\gamma) = \sum_{k} L(\Delta_k \gamma) + \sum_{k} F_k(\gamma_k) \qquad (\Delta_k \gamma = \gamma_{k+1} - \gamma_k)$$

Theorem [with Douglas Dow] Assume that

F is i.i.d. in time, stationary in space, continuous, bounded from below, E *F*(0) < ∞;

•
$$L \in C^2$$
, $\lim_{|v| \to \infty} L(v) = +\infty$, $\limsup_{|v| \to \infty} \frac{L''(v)}{L(v)} < \infty$.

(Doesn't have to be convex, e.g. $L(v) = v^{2p} + \sum_{k=0}^{2p-1} a_k v^k$) Then there is a deterministic, convex, and **differentiable** shape function Λ : for each $v \in \mathbb{R}$, with probability 1,

$$\Lambda(v) = \lim_{n \to \infty} \frac{1}{n} A^n(0, nv),$$

$$\Lambda'(v) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} L'(\Delta_k \gamma^n(v)),$$

where $\gamma^n(v)$ realizes $A^n(0, nv) = \inf\{A(\gamma) | \gamma_0 = 0, \gamma_n = nv\}.$

Using shear
$$\Xi_v(t,x) = (t, x + tv)$$

For a path γ with $\gamma_0 = \gamma_n = 0$

$$B(v,\gamma) = \sum_{k} L(\Delta_k \gamma + v) + \sum_{k} F_k(\gamma_k)$$
$$B^n(v) = \inf\{B(v,\gamma) | \gamma_0 = \gamma_n = 0\}$$

Since $\Xi_v F = \Xi_{-v} F = F$ in distribution,

$$(B^n(v))_{n\in\mathbb{N}}\stackrel{d}{=} (A^n(0,nv))_{n\in\mathbb{N}},$$

so

$$\Lambda(v) = \lim_{n \to \infty} \frac{1}{n} A^n(0, nv) = \lim_{n \to \infty} \frac{1}{n} B^n(v).$$

In addition, $(B^n(v))_{v \in \mathbb{R}}$ is "nicer" than $(A^n(0, nv))_{v \in \mathbb{R}}$

Poisson points model with $A(\gamma) = \sum_k (\Delta_k \gamma)^4$

Poisson points model with $A(\gamma) = \sum_k (\Delta_k \gamma)^4$

$$\frac{1}{n}B^n(v) \text{ for } n = 200$$

Poisson points model with $A(\gamma) = \sum_k (\Delta_k \gamma)^4$

Each path serves a range of values of v.

Proof of differentiability

Use $\gamma^{n}(v)$, the optimal path for $B^{n}(v)$ to estimate $B^{n}(w)$ for $w \approx v$. $B^{n}(w) \leq B^{n}(w, \gamma^{n}(v))$ $\leq B^{n}(v) + (w - v) \sum_{k=0}^{n-1} L'(\Delta_{k}\gamma(v) + v)$ $+ \frac{(w - v)^{2}}{2} \sum_{k=0}^{n-1} L''(\Delta_{k}\gamma(v) + v + s(w - v))$

For
$$w - v > 0$$
,

$$\frac{B^n(w) - B^n(v)}{n(w - v)} \le \frac{1}{n} \sum_{k=0}^{n-1} L'(\Delta_k \gamma(v) + v) + C(w - v)$$

$$\frac{\Lambda(w) - \Lambda(v)}{w - v} \le \liminf_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} L'(\Delta_k \gamma(v) + v) + C(w - v)$$

$$\partial^+ \Lambda(v) \le \liminf_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} L'(\Delta_k \gamma(v) + v).$$

Proof of differentiability

Use $\gamma^n(v)$, the optimal path for $B^n(v)$ to estimate $B^n(w)$ for $w \approx v$. $B^n(w) \leq B^n(w, \gamma^n(v))$ $\leq B^n(v) + (w - v) \sum_{k=0}^{n-1} L'(\Delta_k \gamma(v) + v)$ $+ \frac{(w - v)^2}{2} \sum_{k=0}^{n-1} L''(\Delta_k \gamma(v) + v + s(w - v))$

For
$$w - v < 0$$
,

$$\frac{B^{n}(w) - B^{n}(v)}{n(w - v)} \ge \frac{1}{n} \sum_{k=0}^{n-1} L'(\Delta_{k}\gamma(v) + v) + C|w - v|$$

$$\frac{\Lambda(w) - \Lambda(v)}{w - v} \ge \limsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} L'(\Delta_{k}\gamma(v) + v) + C|w - v|$$

$$\partial^{-}\Lambda(v) \ge \limsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} L'(\Delta_{k}\gamma(v) + v).$$

Proof of differentiability

So

$$\partial^{+}\Lambda(v) \leq \liminf_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} L'(\Delta_{k}\gamma(v) + v)$$

$$\leq \limsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} L'(\Delta_{k}\gamma(v) + v) \leq \partial^{-}\Lambda(v).$$

But Λ is convex, so

$$\partial^{-}\Lambda(v) \le \partial^{+}\Lambda(v).$$

Therefore,

$$\partial^{-}\Lambda(v) = \partial^{+}\Lambda(v) = \Lambda'(v) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} L'(\Delta_k \gamma(v) + v)$$

In terms of the optimal path from (0,0) to (n,nv):

$$\Lambda'(v) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} L'(\Delta_k \gamma(v))$$

Doesn't quite imply strict convexity

$$\Lambda'(v) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} L'(\Delta_k \gamma(v)) = \langle L'(\Delta \gamma(v)) \rangle$$

For example, if $L(v) = v^4$, then $L'(v) = 4v^3$,

$$\Lambda'(v) = 4 \langle (\Delta \gamma(v))^3 \rangle.$$

It is natural to expect this to strictly grow in v (strict convexity) because

$$\langle \Delta \gamma(v) \rangle = v.$$

But the first moment does not control the third moment, so this is not obvious.

Positive temperature case. Average free energy.

$$Z^{n}(y) = \int \exp\left[-A(\gamma)\right] \delta_{0}(d\gamma_{0})d\gamma_{1}\dots d\gamma_{n-1}\delta_{y}(d\gamma_{n})$$
$$= \int \exp\left[-\sum_{k=0}^{n-1} L(\Delta_{k}\gamma) - \sum_{k=0}^{n-1} F_{k}(\gamma_{k})\right] \delta_{0}(d\gamma_{0})d\gamma_{1}\dots d\gamma_{n-1}\delta_{y}(d\gamma_{n})$$

Need more requirements: $\mathbb{E} \sup_{|x| \le 1/2} F_k(x) < \infty$,

$$\liminf_{|v|\to\infty} |L'(v)| > 0, \quad \limsup_{|v|\to\infty} \frac{|L'(v)|}{|L(v)|^{\theta}} < \infty \quad \text{for some } \theta \in (0,1).$$

Theorem [with Douglas Dow] There is a deterministic, convex, **differentiable** $\Lambda : \mathbb{R} \to \mathbb{R}$ s.t. for every $v \in \mathbb{R}$, with prob. 1,

$$\Lambda(v) = -\lim_{n \to \infty} \frac{1}{n} \log Z^n(nv),$$

$$\Lambda'(v) = \lim_{n \to \infty} \mu_{nv}^n \left(\frac{1}{n} \sum_{k=0}^{n-1} L'(\Delta_k \gamma)\right)$$

(μ_{nv}^{n} is the polymer measure on paths connecting (0,0) to (n,nv))

The main estimate (after applying the shear)

All paths connect 0 to 0 (not 0 to Tv)

$$\begin{split} \log \tilde{Z}^{n}(w) &= \log \int \exp \left(-\sum_{k} \left[F_{k}(\gamma_{k}) + L(\Delta_{k}\gamma + w) \right] \right) \mathrm{d}\gamma \\ &\geq \log \int e^{-\sum_{k} \left[F_{k}(\gamma_{k}) + L(\Delta_{k}\gamma + v) + (w-v)L'(\Delta_{k}\gamma + v) + \frac{1}{2}(w-v)^{2}L''(\ldots) \right]} \mathrm{d}\gamma \\ &= \log \tilde{Z}^{n}(v) \\ &+ \log \frac{1}{\tilde{Z}^{n}(v)} \int e^{-\sum_{k} \left[F_{k}(\gamma_{k}) + L(\Delta_{k}\gamma + v) + (w-v)L'(\Delta_{k}\gamma + v) + \frac{1}{2}(w-v)^{2}L''(\ldots) \right]} \mathrm{d}\gamma \\ &= \log \tilde{Z}^{n}(v) + \log \tilde{\mu}_{v}^{n} \left(e^{-\sum_{k} \left[(w-v)L'(\Delta_{k}\gamma + v) + \frac{1}{2}(w-v)^{2}L''(\ldots) \right]} \right) \\ &\geq \log \tilde{Z}^{n}(v) - (w-v) \tilde{\mu}_{v}^{n} \left(\sum_{k=0}^{n-1} L'(\Delta_{k}\gamma + v) \right) - \frac{1}{2}(w-v)^{2} \tilde{\mu}_{v}^{n} \left(\ldots \right) \end{split}$$

Continuous time, HJB eqns, non-white noise, in \mathbb{R}^d , $d \ge 1$

$$A^t(\gamma) = \int_0^t L(\dot{\gamma}_s) ds + \int_0^t F(s, \gamma_s) ds$$

• We no longer assume *F* is white it time:

$$F(t,x) = \sum_{i} \varphi_i(t-t_i, x-x_i) = \int_{\mathbb{R} \times \mathbb{R}^d \times \mathcal{C}} \varphi(t-s, x-y) \mathbf{N}(ds, dy, d\varphi)$$

 (t_i, x_i) are Poisson points in $\mathbb{R} \times \mathbb{R}^d$, each convolved with its own random φ_i (i.i.d., C^2 , uniformly bounded support, an exp-moment)

• $L: \mathbb{R}^d \to \mathbb{R}$ convex, twice differentiable,

$$\begin{split} \lim_{|v|\to\infty} \frac{L(v)}{|v|} &= +\infty\\ \limsup_{|v|\to\infty} \sup_{|r|\le \delta} \frac{\|\nabla^2 L(v+r)\|}{L(v)} &<\infty \quad \text{for some } \delta > 0. \end{split}$$

Continuous time, HJB eqns, non-white noise, in \mathbb{R}^d , $d \ge 1$

$$A^{t}(\gamma) = \int_{0}^{t} L(\dot{\gamma}_{s})ds + \int_{0}^{t} F(s,\gamma_{s})ds$$
$$A(t,x) = \inf \left\{ A^{t}(\gamma) : \gamma(0) = 0, \ \gamma(t) = x \right\}$$
$$\partial_{t}A(t,x) + H(\nabla A(t,x)) = F(t,x), \quad t \in (0,\infty), \ x \in \mathbb{R}^{d}$$

The Hamiltonian H is the Legendre–Fenchel transform of L

$$H(p) = \sup_{v \in \mathbb{R}^d} \{ \langle p, v \rangle - L(v) \}, \quad p \in \mathbb{R}^d$$

$$\lim_{t \searrow 0} A(t, x) = \begin{cases} 0, & x = 0, \\ +\infty, & x \neq 0. \end{cases}$$

Theorem [with Douglas Dow]

Under these conditions, there is a convex deterministic and **differentiable** function $\Lambda : \mathbb{R}^d \to \mathbb{R}$ such that for every $v \in \mathbb{R}^d$, with probability 1,

$$\begin{split} \Lambda(v) &= \lim_{t \to \infty} \frac{1}{T} A(T, Tv) \\ \nabla \Lambda(v) &= \lim_{T \to \infty} \frac{1}{T} \int_0^T \left[\nabla L(\dot{\gamma}_t^T(v)) + \Theta(t, \gamma_t^T(v)) \right] dt, \end{split}$$

where

$$\Theta(t,x) = \int (t-s) \nabla \varphi(t-s,x-y) \mathbf{N}(ds,dy,d\varphi)$$

= $\partial_v \int \varphi(t-s,x-y+v(t-s)) \mathbf{N}(ds,dy,d\varphi) \Big|_{v=0}$

Shape Theorem. HJB Homogenization Version.

Corollary

For every $t \in (0, \infty)$ and $x \in \mathbb{R}^d$, with probability 1,

$$\lim_{\epsilon \searrow 0} \epsilon A(t/\epsilon, x/\epsilon) = t \Lambda(x/t)$$

The nonrandom function $\overline{U}(t,x) = t\Lambda(x/t)$ is the fundamental viscosity solution of the deterministic HJB equation

$$\partial_t \overline{U}(t,x) + \overline{H}(\nabla \overline{U}(t,x)) = 0,$$

where \overline{H} is the Legendre–Fenchel transform of Λ :

$$\overline{H}(p) = \sup_{v \in \mathbb{R}^d} \{ \langle v, p \rangle - \Lambda(v) \}, \quad p \in \mathbb{R}^d.$$

Moreover, \overline{H} is strictly convex (no flat edges), and $\overline{U}(t, x)$ is a **classical** solution which is C^1 for all $t > 0, x \in \mathbb{R}^d$.

Zero viscosity HJB:

- Schwab 2009
- Bakhtin, Cator, Khanin 2014, Bakhtin 2016 (for quadratic *L* in the context of Burgers equation),
- Seeger 2021

Positive viscosity HJB:

- Kosygina, Varadhan 2008
- Jing, Souganidis, Tran 2017
- Bakhtin, Li 2019 (Burgers equation, quadratic L)
- Janjigian, Rassoul-Agha, Seppäläinen (KPZ eqn, quadratic L)

- continuous FPP with asymmetries
- (parabolic) HJB with positive viscosity/diffusion
- More general potentials (we still need shear invariance for the background process)?
- Does this say anything about lattice models?
- Strict convexity? Use our formulas for $\nabla \Lambda$?