Differentiability of shape functions for directed polymers in continuous space

Yuri Bakhtin
joint work with Douglas Dow

Courant Institute, NYU

BIRS 2023

Optimal paths in random environments (zero temperature)

$$
A_{\omega}(x, y)=\inf \left\{A_{\omega}(\gamma) \mid \quad \text { admissible } \gamma: x \rightsquigarrow y\right\}
$$

Shape function

$$
\Lambda(v)=\lim _{T \rightarrow \infty} \frac{1}{T} A_{\omega}(0, T v)
$$

or

$$
\Lambda(v)=\lim _{n \rightarrow \infty} \frac{1}{n} A_{\omega}\left(0, x_{n}\right), \quad \frac{x_{n}}{n} \rightarrow v
$$

Exact shape functions (including the temperature >0 case)

- Corner growth, i.i.d. exponential weights: Rost (1981)
- (generalized) Hammersley process: Hammersley (1972), Aldous, Diaconis (1995), Cator, Pimentel (2011)
- Euclidean FPP: Howard, Newman (1997)
- O’Connell-Yor polymers: Baryshnikov (2001), Gravner, Tracy, Widom (2001), Hambly, Martin, O’Connell (2002), Moriarty, O’Connell (2007)
- Log-gamma polymers: Seppäläinen (2012)
- Burgers equation, quadratic L : Bakhtin, Cator, Khanin (2014), Bakhtin (2016), Bakhtin, Li (2019)
- KPZ equation: Janjigian, Rassoul-Agha, Seppäläinen (recent)

Shape function

- Always convex
- In all explicit examples, differentiable and strictly convex
- Strict convexity would imply existence-uniqueness of one-sided geodesics and infinite volume polymer measures (thermodynamic limits) with a given slope, and even just differentiability allows to make pretty strong claims in that direction [Janjigian, Rassoul-Agha, Seppäläinen 2020,2022]
- Differentiability at the edge of the percolation cone for lattice FPP, LPP [Auffinger, Damron 2013].

This talk:
Several classes of models where the shape function is not known precisely but differentiability holds:

- continuous space directed polymers
- zero temperature
- positive temperature
- homogenization in HJB equations with dynamic environments.

Shear invariant case (Burgers/KPZ type models)

Poissonian points in space-time $\mathbb{R} \times \mathbb{R}$:

[Bakhtin, Cator, Khanin 2014]

Shear invariant case (Burgers/KPZ type models)

$$
A^{0, T}(\gamma)=\int_{0}^{T} \dot{\gamma}(t)^{2} d t-\#\{\text { Poisson points on } \gamma\}
$$

If $\gamma(0)=\gamma(T)=0 \quad$ and $\quad \Xi_{v} \gamma(t)=\gamma(t)+v t, \quad$ then

$$
\begin{aligned}
& \int_{0}^{T}\left(\frac{d}{d t} \Xi_{v} \gamma(t)\right)^{2} d t \\
& =\int_{0}^{T}(\dot{\gamma}(t)+v)^{2} d t \\
& =\int_{0}^{T} \dot{\gamma}(t)^{2} d t+2 v \int_{0}^{T} \dot{\gamma}(t) d t+\int_{0}^{T} v^{2} d t \\
& =\int_{0}^{T} \dot{\gamma}(t)^{2} d t+T v^{2}
\end{aligned}
$$

PPP is distributionally invariant under Ξ_{v}, so $\Lambda(v)=\Lambda(0)+v^{2}$.

Several other shear invariant models

$$
A(\gamma)=\sum_{k}\left(\gamma_{k+1}-\gamma_{k}\right)^{2}+\sum_{k} F_{k}\left(\gamma_{k}\right)
$$

where F_{k} are i.i.d. in time and stationary in space [Bakhtin, 2016], or simply

$$
A(\gamma)=\sum_{k}\left(\gamma_{k+1}-\gamma_{k}\right)^{2}
$$

but require γ_{k} to coincide with one of the Poisson points on $\{k\} \times \mathbb{R}$.

Trees of minimizers

paths minimizing

$$
A=\sum\left(\gamma_{k+1}-\gamma_{k}\right)^{2}
$$

for various endpoints.

Limit shape

A point is shown in black if there is a path to that point with

$$
A=\sum_{i=1}^{n}\left(\gamma_{i}-\gamma_{i-1}\right)^{2}<\mathbf{2 0}
$$

Limit shape

A point is shown in black if there is a path to that point with

$$
A=\sum_{i=1}^{n}\left(\gamma_{i}-\gamma_{i-1}\right)^{2}<\mathbf{4 0 0}
$$

The boundary of the limit shape is an ellipse

$$
x^{2}+C\left(t-\frac{1}{2 C}\right)^{2}=\frac{1}{4 C}
$$

with $C=\Lambda(0)$.

General (nonquadratic) action

$$
A(\gamma)=\sum_{k} L\left(\Delta_{k} \gamma\right)+\sum_{k} F_{k}\left(\gamma_{k}\right) \quad\left(\Delta_{k} \gamma=\gamma_{k+1}-\gamma_{k}\right)
$$

Theorem [with Douglas Dow] Assume that

- F is i.i.d. in time, stationary in space, continuous, bounded from below, $\mathbb{E} F(0)<\infty$;
- $L \in C^{2}, \quad \lim _{|v| \rightarrow \infty} L(v)=+\infty, \quad \lim \sup _{|v| \rightarrow \infty} \frac{L^{\prime \prime}(v)}{L(v)}<\infty$.
(Doesn't have to be convex, e.g. $L(v)=v^{2 p}+\sum_{k=0}^{2 p-1} a_{k} v^{k}$)
Then there is a deterministic, convex, and differentiable shape function Λ : for each $v \in \mathbb{R}$, with probability 1 ,

$$
\begin{gathered}
\Lambda(v)=\lim _{n \rightarrow \infty} \frac{1}{n} A^{n}(0, n v) \\
\Lambda^{\prime}(v)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma^{n}(v)\right)
\end{gathered}
$$

where $\gamma^{n}(v)$ realizes $A^{n}(0, n v)=\inf \left\{A(\gamma) \mid \gamma_{0}=0, \gamma_{n}=n v\right\}$.

Using shear $\quad \Xi_{v}(t, x)=(t, x+t v)$

For a path γ with $\gamma_{0}=\gamma_{n}=0$

$$
\begin{aligned}
B(v, \gamma) & =\sum_{k} L\left(\Delta_{k} \gamma+v\right)+\sum_{k} F_{k}\left(\gamma_{k}\right) \\
B^{n}(v) & =\inf \left\{B(v, \gamma) \mid \gamma_{0}=\gamma_{n}=0\right\}
\end{aligned}
$$

Since $\Xi_{v} F=\Xi_{-v} F=F$ in distribution,

$$
\left(B^{n}(v)\right)_{n \in \mathbb{N}} \stackrel{d}{=}\left(A^{n}(0, n v)\right)_{n \in \mathbb{N}}
$$

SO

$$
\Lambda(v)=\lim _{n \rightarrow \infty} \frac{1}{n} A^{n}(0, n v)=\lim _{n \rightarrow \infty} \frac{1}{n} B^{n}(v) .
$$

In addition, $\left(B^{n}(v)\right)_{v \in \mathbb{R}}$ is "nicer" than $\left(A^{n}(0, n v)\right)_{v \in \mathbb{R}}$

Poisson points model with $A(\gamma)=\sum_{k}\left(\Delta_{k} \gamma\right)^{4}$

Poisson points model with $A(\gamma)=\sum_{k}\left(\Delta_{k} \gamma\right)^{4}$

$$
\frac{1}{n} B^{n}(v) \text { for } n=200
$$

Poisson points model with $A(\gamma)=\sum_{k}\left(\Delta_{k} \gamma\right)^{4}$

Optimal paths realizing $B^{n}(v), v \in[-1,1]$.

Each path serves a range of values of v.

Proof of differentiability

Use $\gamma^{n}(v)$, the optimal path for $B^{n}(v)$ to estimate $B^{n}(w)$ for $w \approx v$. $B^{n}(w) \leq B^{n}\left(w, \gamma^{n}(v)\right)$

$$
\begin{aligned}
\leq B^{n}(v)+(w-v) & \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma(v)+v\right) \\
& +\frac{(w-v)^{2}}{2} \sum_{k=0}^{n-1} L^{\prime \prime}\left(\Delta_{k} \gamma(v)+v+s(w-v)\right)
\end{aligned}
$$

For $w-v>0$,

$$
\begin{aligned}
\frac{B^{n}(w)-B^{n}(v)}{n(w-v)} & \leq \frac{1}{n} \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma(v)+v\right)+C(w-v) \\
\frac{\Lambda(w)-\Lambda(v)}{w-v} & \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma(v)+v\right)+C(w-v) \\
\partial^{+} \Lambda(v) & \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma(v)+v\right)
\end{aligned}
$$

Proof of differentiability

Use $\gamma^{n}(v)$, the optimal path for $B^{n}(v)$ to estimate $B^{n}(w)$ for $w \approx v$. $B^{n}(w) \leq B^{n}\left(w, \gamma^{n}(v)\right)$

$$
\begin{aligned}
\leq B^{n}(v)+(w-v) & \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma(v)+v\right) \\
& +\frac{(w-v)^{2}}{2} \sum_{k=0}^{n-1} L^{\prime \prime}\left(\Delta_{k} \gamma(v)+v+s(w-v)\right)
\end{aligned}
$$

For $w-v<0$,

$$
\begin{aligned}
\frac{B^{n}(w)-B^{n}(v)}{n(w-v)} & \geq \frac{1}{n} \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma(v)+v\right)+C|w-v| \\
\frac{\Lambda(w)-\Lambda(v)}{w-v} & \geq \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma(v)+v\right)+C|w-v| \\
\partial^{-} \Lambda(v) & \geq \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma(v)+v\right) .
\end{aligned}
$$

Proof of differentiability

So

$$
\begin{aligned}
& \partial^{+} \Lambda(v) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma(v)+v\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma(v)+v\right) \leq \partial^{-} \Lambda(v) .
\end{aligned}
$$

But Λ is convex, so

$$
\partial^{-} \Lambda(v) \leq \partial^{+} \Lambda(v)
$$

Therefore,

$$
\partial^{-} \Lambda(v)=\partial^{+} \Lambda(v)=\Lambda^{\prime}(v)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma(v)+v\right)
$$

In terms of the optimal path from $(0,0)$ to $(n, n v)$:

$$
\Lambda^{\prime}(v)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma(v)\right)
$$

Doesn’t quite imply strict convexity

$$
\Lambda^{\prime}(v)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma(v)\right)=\left\langle L^{\prime}(\Delta \gamma(v))\right\rangle
$$

For example, if $L(v)=v^{4}$, then $L^{\prime}(v)=4 v^{3}$,

$$
\Lambda^{\prime}(v)=4\left\langle(\Delta \gamma(v))^{3}\right\rangle .
$$

It is natural to expect this to strictly grow in v (strict convexity) because

$$
\langle\Delta \gamma(v)\rangle=v .
$$

But the first moment does not control the third moment, so this is not obvious.

Positive temperature case. Average free energy.

$$
\begin{aligned}
Z^{n}(y) & =\int \exp [-A(\gamma)] \delta_{0}\left(d \gamma_{0}\right) d \gamma_{1} \ldots d \gamma_{n-1} \delta_{y}\left(d \gamma_{n}\right) \\
& =\int \exp \left[-\sum_{k=0}^{n-1} L\left(\Delta_{k} \gamma\right)-\sum_{k=0}^{n-1} F_{k}\left(\gamma_{k}\right)\right] \delta_{0}\left(d \gamma_{0}\right) d \gamma_{1} \ldots d \gamma_{n-1} \delta_{y}\left(d \gamma_{n}\right)
\end{aligned}
$$

Need more requirements: $\quad \mathbb{E} \sup _{|x| \leq 1 / 2} F_{k}(x)<\infty$,

$$
\liminf _{|v| \rightarrow \infty}\left|L^{\prime}(v)\right|>0, \quad \limsup _{|v| \rightarrow \infty} \frac{\left|L^{\prime}(v)\right|}{|L(v)|^{\theta}}<\infty \quad \text { for some } \theta \in(0,1)
$$

Theorem [with Douglas Dow] There is a deterministic, convex, differentiable $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$ s.t. for every $v \in \mathbb{R}$, with prob. 1,

$$
\begin{gathered}
\Lambda(v)=-\lim _{n \rightarrow \infty} \frac{1}{n} \log Z^{n}(n v), \\
\Lambda^{\prime}(v)=\lim _{n \rightarrow \infty} \mu_{n v}^{n}\left(\frac{1}{n} \sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma\right)\right)
\end{gathered}
$$

($\mu_{n v}^{n}$ is the polymer measure on paths connecting $(0,0)$ to $(n, n v)$)

The main estimate (after applying the shear)

All paths connect 0 to $0($ not 0 to $T v)$

$$
\begin{aligned}
& \log \tilde{Z}^{n}(w)=\log \int \exp \left(-\sum_{k}\left[F_{k}\left(\gamma_{k}\right)+L\left(\Delta_{k} \gamma+w\right)\right]\right) \mathrm{d} \gamma \\
\geq & \log \int e^{-\sum_{k}\left[F_{k}\left(\gamma_{k}\right)+L\left(\Delta_{k} \gamma+v\right)+(w-v) L^{\prime}\left(\Delta_{k} \gamma+v\right)+\frac{1}{2}(w-v)^{2} L^{\prime \prime}(\ldots)\right]} \mathrm{d} \gamma \\
= & \log \tilde{Z}^{n}(v) \\
& +\log \frac{1}{\tilde{Z}^{n}(v)} \int e^{-\sum_{k}\left[F_{k}\left(\gamma_{k}\right)+L\left(\Delta_{k} \gamma+v\right)+(w-v) L^{\prime}\left(\Delta_{k} \gamma+v\right)+\frac{1}{2}(w-v)^{2} L^{\prime \prime}(\ldots)\right]} \mathrm{d} \gamma \\
= & \log \tilde{Z}^{n}(v)+\log \tilde{\mu}_{v}^{n}\left(e^{-\sum_{k}\left[(w-v) L^{\prime}\left(\Delta_{k} \gamma+v\right)+\frac{1}{2}(w-v)^{2} L^{\prime \prime}(\ldots)\right]}\right) \\
\geq & \log \tilde{Z}^{n}(v)-(w-v) \tilde{\mu}_{v}^{n}\left(\sum_{k=0}^{n-1} L^{\prime}\left(\Delta_{k} \gamma+v\right)\right)-\frac{1}{2}(w-v)^{2} \tilde{\mu}_{v}^{n}(\ldots)
\end{aligned}
$$

Continuous time, HJB eqns, non-white noise, in $\mathbb{R}^{d}, d \geq 1$

$$
A^{t}(\gamma)=\int_{0}^{t} L\left(\dot{\gamma}_{s}\right) d s+\int_{0}^{t} F\left(s, \gamma_{s}\right) d s
$$

- We no longer assume F is white it time:

$$
F(t, x)=\sum_{i} \varphi_{i}\left(t-t_{i}, x-x_{i}\right)=\int_{\mathbb{R} \times \mathbb{R}^{d} \times \mathcal{C}} \varphi(t-s, x-y) \mathbf{N}(d s, d y, d \varphi)
$$

$\left(t_{i}, x_{i}\right)$ are Poisson points in $\mathbb{R} \times \mathbb{R}^{d}$, each convolved with its own random φ_{i} (i.i.d., C^{2}, uniformly bounded support, an exp-moment)

- $L: \mathbb{R}^{d} \rightarrow \mathbb{R}$ convex, twice differentiable,

$$
\lim _{|v| \rightarrow \infty} \frac{L(v)}{|v|}=+\infty
$$

$$
\limsup _{|v| \rightarrow \infty} \sup _{|r| \leq \delta} \frac{\left\|\nabla^{2} L(v+r)\right\|}{L(v)}<\infty \quad \text { for some } \delta>0
$$

Continuous time, HJB eqns, non-white noise, in $\mathbb{R}^{d}, d \geq 1$

$$
\begin{gathered}
A^{t}(\gamma)=\int_{0}^{t} L\left(\dot{\gamma}_{s}\right) d s+\int_{0}^{t} F\left(s, \gamma_{s}\right) d s \\
A(t, x)=\inf \left\{A^{t}(\gamma): \gamma(0)=0, \gamma(t)=x\right\} \\
\partial_{t} A(t, x)+H(\nabla A(t, x))=F(t, x), \quad t \in(0, \infty), x \in \mathbb{R}^{d}
\end{gathered}
$$

The Hamiltonian H is the Legendre-Fenchel transform of L

$$
H(p)=\sup _{v \in \mathbb{R}^{d}}\{\langle p, v\rangle-L(v)\}, \quad p \in \mathbb{R}^{d}
$$

$$
\lim _{t \searrow 0} A(t, x)= \begin{cases}0, & x=0 \\ +\infty, & x \neq 0\end{cases}
$$

Shape Theorem

Theorem [with Douglas Dow]
Under these conditions, there is a convex deterministic and differentiable function $\Lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that for every $v \in \mathbb{R}^{d}$, with probability 1 ,

$$
\begin{gathered}
\Lambda(v)=\lim _{t \rightarrow \infty} \frac{1}{T} A(T, T v) \\
\nabla \Lambda(v)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left[\nabla L\left(\dot{\gamma}_{t}^{T}(v)\right)+\Theta\left(t, \gamma_{t}^{T}(v)\right)\right] d t
\end{gathered}
$$

where

$$
\begin{aligned}
\Theta(t, x) & =\int(t-s) \nabla \varphi(t-s, x-y) \mathbf{N}(d s, d y, d \varphi) \\
& =\left.\partial_{v} \int \varphi(t-s, x-y+v(t-s)) \mathbf{N}(d s, d y, d \varphi)\right|_{v=0}
\end{aligned}
$$

Shape Theorem. HJB Homogenization Version.

Corollary
For every $t \in(0, \infty)$ and $x \in \mathbb{R}^{d}$, with probability 1 ,

$$
\lim _{\epsilon \searrow 0} \epsilon A(t / \epsilon, x / \epsilon)=t \Lambda(x / t)
$$

The nonrandom function $\bar{U}(t, x)=t \Lambda(x / t)$ is the fundamental viscosity solution of the deterministic HJB equation

$$
\partial_{t} \bar{U}(t, x)+\bar{H}(\nabla \bar{U}(t, x))=0,
$$

where \bar{H} is the Legendre-Fenchel transform of Λ :

$$
\bar{H}(p)=\sup _{v \in \mathbb{R}^{d}}\{\langle v, p\rangle-\Lambda(v)\}, \quad p \in \mathbb{R}^{d} .
$$

Moreover, \bar{H} is strictly convex (no flat edges), and $\bar{U}(t, x)$ is a classical solution which is C^{1} for all $t>0, x \in \mathbb{R}^{d}$.

Existing homogenization results for dynamic environments

Zero viscosity HJB:

- Schwab 2009
- Bakhtin, Cator, Khanin 2014, Bakhtin 2016 (for quadratic L in the context of Burgers equation),
- Seeger 2021

Positive viscosity HJB:

- Kosygina, Varadhan 2008
- Jing, Souganidis, Tran 2017
- Bakhtin, Li 2019 (Burgers equation, quadratic L)
- Janjigian, Rassoul-Agha, Seppäläinen (KPZ eqn, quadratic L)

Further questions

- continuous FPP with asymmetries
- (parabolic) HJB with positive viscosity/diffusion
- More general potentials (we still need shear invariance for the background process)?
- Does this say anything about lattice models?
- Strict convexity? Use our formulas for $\nabla \Lambda$?

