Finite-rank complex perturbations of Hermitian random matrices

Tatyana Shcherbina
University of Wisconsin - Madison
based on the joint paper with M.Shcherbina

Random Growth Models and KPZ Universality, May 28 - June 2
BIRS, Canada, 2023

Model

We are going to consider the random matrices of the form

$$
\mathrm{H}_{\mathrm{eff}}=\mathrm{H}+\mathrm{i} \Gamma,
$$

where H is a random matrix ensemble with an appropriate symmetry (e.g., Hermitian or real symmetric), and Γ is a positive deformation of a constant rank M.
Most classical random matrix ensembles (such as Gaussian ensembles GUE/GOE, Wigner matrices, β-ensembles, etc.) are invariant under the unitary transformations, so one can consider

$$
\Gamma=\left(\begin{array}{ccccccc}
\gamma_{1} & 0 & \ldots & \ldots & 0 & \ldots & 0 \\
0 & \gamma_{2} & 0 & \ldots & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & \gamma_{\mathrm{M}} & 0 & \ldots & 0 \\
0 & \ldots & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & \ldots & 0 & 0 & \ldots & 0
\end{array}\right) .
$$

For the most part of the talk we restrict ourself to the case of Hermitian matrices and rank-one perturbation, i.e. $\Gamma=\operatorname{diag}\{\gamma, 0, \ldots, 0\}$.

Results for real perturbations

There are a lot of interesting works for the case of real deformation,

$$
\mathrm{H}_{\mathrm{eff}}=\mathrm{H}+\Gamma
$$

In this situation the eigenvalues are real, the main part of the spectrum does not change but some "outlier" can be separated as γ 's grows and we observe so called BBP transition.

- Baik, Ben Arous, and Peche (2005)
- Peche (2006)
- Capitaine, Donati-Martin, Feral (2009)
- Benaych-Georges, Guionnet, Maida (2011)
- Knowles, Yin (2014)
- ...

Anti-Hermitian perturbation

If we return to the anti-Hermitian deformation $\mathrm{H}_{\mathrm{eff}}=\mathrm{H}+\mathrm{i} \Gamma$, then the situation is much different since $\mathrm{H}_{\text {eff }}$ is not Hermitian anymore, and thus has complex eigenvalues.
However, in contrast to the classical non-Hermitian models such as Ginibre ensemble, if M is fixed and $\mathrm{N} \rightarrow \infty$, matrices $\mathcal{H}_{\text {eff }}$ are weakly non-Hermitian. It is straightforward to check that for $\gamma>0$ (rank-one case) the eigenvalues of $\mathrm{H}_{\text {eff }}$ has the form

$$
\lambda_{\mathrm{j}}(\gamma)=\lambda_{\mathrm{j}}(\mathrm{H})+\zeta_{\mathrm{j}}(\gamma), \quad \operatorname{Im} \zeta_{\mathrm{j}}>0
$$

Moreover, since and eigenvectors $\left\{\Psi_{\mathrm{j}}\right\}$ of H (e.g. for GUE) are uniformly distributed over the sphere, it is naturally to expect that

$$
\zeta_{\mathrm{j}}(\gamma) \sim \mathrm{i} \gamma\left(\mathrm{E}_{11} \Psi_{\mathrm{j}}, \Psi_{\mathrm{j}}\right) \sim \mathrm{in}^{-1} \mathrm{y}_{\mathrm{j}}
$$

Hence it appears that the planar density of eigenvalues is concentrated in the strip $\operatorname{Im} \mathrm{z} \sim \mathrm{n}^{-1}$

This is indeed the case, and moreover one can show that for GUE (and, more generally, for Wigner matrices) the eigenvalues of $\mathrm{H}_{\text {eff }}$ are all in the upper half of the complex plane and for N large they all, except possibly one outlier, lie just above the interval $[-2,2]$ of the real line. The presence of the outlier is determined by the value of $\gamma(\gamma<1$ corresponds to no outliers; $\gamma>1$ corresponds to one outlier lying much higher in the complex plane, its imaginary part is about $\gamma-1 / \gamma$).
Some results in this direction:

- O'Rourke, Renfrew (2014)
- O'Rourke, Wood (2017)
- Rochet (2017)
- Dubach, Erdös (2022)
- Fyodorov, Khoruzhenko, Poplavskyi (2023)

Apart from the mathematical curiosity, there is also motivation coming from physics. In the physics literature, the eigenvalues of $\mathrm{H}_{\text {eff }}$ are associated with the zeroes of a scattering matrix in the complex energy plane, and their complex conjugates with the poles of the same scattering matrix, known as "resonances". The latter are obviously the eigenvalues of matrices $\mathrm{H}_{\text {eff }}=\mathrm{H}+\mathrm{i} \Gamma$ with γ 's replaced by $-\gamma$'s. In this context the eigenvalues imaginary part is associated with the "resonance width" (see Verbaarschot, Weidenmüller, Zirnbauer '85; Sokolov, Zelevinsky '89; Fyodorov, Sommers '96,...)

In this context, one of the interesting questions about the spectral statistics of $\mathrm{H}_{\text {eff }}$ is the distribution of $\operatorname{Im} \mathrm{z}_{\mathrm{i}}$ (as was mentioned above, the planar density of the eigenvalues is concentrated in the strip $\operatorname{Im} \mathrm{z} \sim \mathrm{N}^{-1}$, so all but finitely many $\operatorname{Im} \mathrm{z}_{\mathrm{i}} \sim \mathrm{N}^{-1}$.

Some results

GUE case (and some related models)

- Haake, Izrailev, Lehmann, Saher, Sommers '92
- Fyodorov, Sommers '96
- Fyodorov, Sommers '97
- Fyodorov, Khoruzhenko '99
- Fyodorov, Mehlig '02
- Fyodorov, Sommers '03

For the exact formulas for joint eigenvalue density for rank-one perturbation of β-ensembles see also

- Kozhan '17 (rank one perturbation of β-ensembles), Killip, Kozhan'17 (β-circular ensembles), Alpan, Kozhan '21 (same for chiral Gaussian β-ensembles)

General non-Hermitian random matrices: methods

Logarithmic potential approach (by Girko)

Based on the formula:

$$
\nu(\zeta, \bar{\zeta})=\frac{1}{2 \pi} \Delta_{\zeta} \int \nu(\mathrm{z}, \overline{\mathrm{z}}) \log |\zeta-\mathrm{z}| \mathrm{dzd} \overline{\mathrm{z}}
$$

Hence, introducing $\mathrm{X}(\mathrm{z})=\left(\mathrm{H}_{\text {eff }}-\mathrm{z}\right)\left(\mathrm{H}_{\text {eff }}-\mathrm{z}\right)^{*}$, we have

$$
\begin{aligned}
\mathcal{N}_{\mathrm{N}}[\mathrm{~h}] & =\sum_{\mathrm{i}} \mathrm{~h}\left(\mathrm{z}_{\mathrm{i}}, \overline{\mathrm{z}}_{\mathrm{i}}\right)=\sum_{\mathrm{j}} \frac{1}{4 \pi} \int \mathrm{~h}(\mathrm{z}, \overline{\mathrm{z}}) \Delta_{\mathrm{z}} \log \left|\mathrm{z}_{\mathrm{j}}-\mathrm{z}\right|^{2} \operatorname{dzd} \overline{\mathrm{z}} \\
& =\frac{1}{4 \pi} \int \Delta \mathrm{~h}(\mathrm{z}, \overline{\mathrm{z}}) \cdot \log \operatorname{det} \mathrm{X}(\mathrm{z}) \mathrm{dzd} \overline{\mathrm{z}}
\end{aligned}
$$

Since $\mathrm{X}(\mathrm{z})$ is a hermitian matrix, one can find its limiting spectral distribution $\mu_{\mathrm{n}}^{(\mathrm{z})}(\lambda)$. Then

$$
\log \operatorname{det} \mathrm{X}(\mathrm{z})=\int_{0}^{\infty} \log \lambda \mathrm{d} \mu_{\mathrm{N}}^{(\mathrm{z})}(\lambda)
$$

In particular,

$$
\begin{aligned}
\mathbb{E}\left\{\mathcal{N}_{\mathrm{N}}[\mathrm{~h}]\right\} & =\frac{1}{4 \pi} \int \Delta \mathrm{~h}(\mathrm{z}, \overline{\mathrm{z}}) \cdot \mathbb{E}\{\log \operatorname{det} \mathrm{X}(\mathrm{z})\} \mathrm{dzd} \overline{\mathrm{z}} \\
& =\frac{1}{4 \pi} \int \mathrm{~h}(\mathrm{z}, \overline{\mathrm{z}}) \cdot \Delta \mathbb{E}\{\log \operatorname{det} \mathrm{X}(\mathrm{z})\} \mathrm{dzd} \overline{\mathrm{z}}
\end{aligned}
$$

and hence averaged density of the eigenvalues $\mathrm{z}_{\mathrm{j}}=\mathrm{X}_{\mathrm{j}}+\mathrm{i} \mathrm{Y}_{\mathrm{j}}$

$$
\rho_{\mathrm{N}}(\mathrm{X}, \mathrm{Y})=\frac{1}{\mathrm{~N}} \mathbb{E}\left\{\sum_{\mathrm{j}=1}^{\mathrm{n}} \delta\left(\mathrm{X}-\mathrm{X}_{\mathrm{j}}\right) \delta\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{j}}\right)\right\}
$$

can be computed as

$$
\rho_{\mathrm{N}}(\mathrm{X}, \mathrm{Y})=\frac{1}{\pi \mathrm{~N}} \frac{\partial^{2}}{\partial \mathrm{z} \partial \overline{\mathrm{z}}} \mathbb{E}\{\log \operatorname{det} \mathrm{X}(\mathrm{z})\}
$$

where $\mathrm{z}=\mathrm{X}+\mathrm{iY}$.

As we discussed, we are interested in the scale $\operatorname{Imz} \sim \mathrm{N}^{-1}$, so one need to define the rescaled version of $\rho_{\mathrm{N}}(\mathrm{X}, \mathrm{Y})$ for $\mathrm{y}=\mathrm{N} \rho_{\mathrm{H}}(\mathrm{X}) \mathrm{Y}$:

$$
\tilde{\rho}_{\mathrm{N}}(\mathrm{X}, \mathrm{y})=\frac{1}{\mathrm{~N} \rho_{\mathrm{H}}(\mathrm{X})} \mathbb{E}\left\{\sum_{\mathrm{j}=1}^{\mathrm{n}} \delta\left(\mathrm{X}-\mathrm{X}_{\mathrm{j}}\right) \delta\left(\mathrm{y}-\rho_{\mathrm{H}}(\mathrm{X}) \mathrm{NY} \mathrm{Y}_{\mathrm{j}}\right)\right\}, \quad \mathrm{X} \in \operatorname{bulk}(\sigma(\mathrm{H})) .
$$

We are interested in the limit of this measure when the size of matrix N goes to infinity.

Averaging of logarithm

Averaging of logarithm (by Fyodorov and Sommers'96)

Technically, instead studying of $\mathrm{E}\{\log \operatorname{det} \mathrm{X}(\mathrm{z})\}$ it is convenient to introduce the generating function

$$
\mathcal{Z}_{\mathrm{N}}\left(\kappa, \mathrm{z}_{1}, \mathrm{z}_{2}\right)=\mathrm{E}\left\{\frac{\operatorname{det}\left(\mathrm{X}\left(\mathrm{z}_{1}\right)+\kappa^{2} / \mathrm{N}^{2}\right)}{\operatorname{det}\left(\mathrm{X}\left(\mathrm{z}_{2}\right)+\kappa^{2} / \mathrm{N}^{2}\right)}\right\}
$$

where z_{1} and z_{2} are auxiliary spectral parameters in the vicinity of $E+i y / N$:

$$
\mathrm{z}_{\mathrm{l}}=\mathrm{E}_{\mathrm{l}}+\frac{\mathrm{i} \mathrm{y}_{1}}{\mathrm{~N}}, \quad \mathrm{E}_{\mathrm{l}}=\mathrm{E}+\frac{\mathrm{x}_{\mathrm{l}}}{\mathrm{~N}}, \quad \mathrm{l}=1,2 .
$$

Given $\mathcal{Z}_{\mathrm{N}}\left(\kappa, \mathrm{z}_{1}, \mathrm{z}_{2}\right)$, the density can be obtained using the following identity:

$$
\begin{aligned}
& \tilde{\rho}_{\mathrm{N}}(\mathrm{E}, \mathrm{y}) \\
& \qquad=\left.\frac{1}{4 \pi} \lim _{\kappa \rightarrow 0}\left(\frac{\partial}{\partial \mathrm{y}_{1}}\left(\lim _{\mathrm{y}_{2} \rightarrow \mathrm{y}_{1}} \frac{\partial \mathcal{Z}_{\mathrm{N}}}{\partial \mathrm{y}_{2}}\right)+\frac{\partial}{\partial \mathrm{x}_{1}}\left(\lim _{\mathrm{x}_{2} \rightarrow \mathrm{x}_{1}} \frac{\partial \mathcal{Z}_{\mathrm{N}}}{\partial \mathrm{x}_{2}}\right)\right)\right|_{\begin{array}{l}
\mathrm{y}_{1}=\mathrm{y} \\
\mathrm{x}_{1}=\mathrm{x}_{2}=0
\end{array}}
\end{aligned}
$$

Integral representation for $\mathcal{Z}\left(\kappa, \mathrm{z}_{1}, \mathrm{z}_{2}\right)$ (for GUE)

$$
\begin{aligned}
\mathcal{Z}\left(\kappa, \mathrm{z}_{1}, \mathrm{z}_{2}\right)= & \mathrm{n}^{4} \int_{\left|\mathrm{u}_{1}\right|=1} \int_{\left|\mathrm{u}_{2}\right|=1} \mathrm{du}_{1} \mathrm{du}_{2} \int_{-\infty}^{\infty} \mathrm{da}_{1} \mathrm{da}_{2} \\
& \exp \left\{\mathrm{n}\left(\phi\left(\mathrm{u}_{1}, \mathrm{z}_{\kappa, 1}\right)+\phi\left(\mathrm{u}_{2}, \mathrm{z}_{\kappa, 1}\right)-\phi\left(\mathrm{a}_{1}, \mathrm{z}_{\kappa, 2}\right)-\phi\left(\mathrm{a}_{2}, \mathrm{z}_{\kappa, 2}\right)\right)\right\} \\
& \times \mathrm{F}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{U}, \mathrm{~S}\right) \mathrm{dUdS}
\end{aligned}
$$

where U is a unitary 2×2 matrix $\left(\mathrm{U} \in \mathrm{U}_{\mathrm{j}} \in \mathrm{O}(2)\right)$ and S is a hyperbolic 2×2 $\operatorname{matrix}(\mathrm{S} \in \mathrm{U}(1,1))$

$$
\mathrm{z}_{\kappa, \mathrm{l}}=\mathrm{E}+\mathrm{in}^{-1} \sqrt{\mathrm{y}_{\mathrm{l}}^{2}+\kappa^{2}}, \quad \phi(\mathrm{u}, \mathrm{z})=\frac{\mathrm{u}^{2}}{2}-\mathrm{izu}-\log \mathrm{u}
$$

F is a rather complicated function of $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{U}, \mathrm{S}$ which does not contain n in the main order.

The analysis of $\mathcal{Z}\left(\mathrm{z}, \mathrm{z}_{\mathrm{b}}\right)$ is a standard but rather involved problem of the saddle point method, since there are 4 saddle points and the factor n^{4} before the integral makes it necessary to take into account all terms of the forth order in the expansion near the saddle points.

Density for GUE plus rank 1 complex perturbation

Fyodorov and Sommers '96

Recall that $z=E+i y / n \rho_{\mathrm{H}}(\mathrm{E})$.

$$
\begin{equation*}
\tilde{\rho}(\mathrm{E}, \mathrm{y})=\lim _{\mathrm{N} \rightarrow \infty} \tilde{\rho}_{\mathrm{N}}(\mathrm{E}, \mathrm{y})=-\frac{\mathrm{d}}{\mathrm{dy}}\left(\mathrm{e}^{-\mathrm{y} \tau} \frac{\sinh \mathrm{y}}{\mathrm{y}}\right) \tag{1}
\end{equation*}
$$

where $\tau=\left(2 \pi \rho_{\mathrm{H}}(\mathrm{E})\right)^{-1}\left(\gamma+\gamma^{-1}\right)$ and

$$
\rho_{\mathrm{H}}(\mathrm{E})=\rho_{\mathrm{sc}}(\mathrm{E})=\frac{1}{2 \pi} \sqrt{4-\mathrm{E}^{2}}, \quad \mathrm{E} \in(-2,2)
$$

Given $\tilde{\rho}(\mathrm{E}, \mathrm{y})$, expected fraction of the eigenvalues of $\mathrm{H}_{\text {eff }}$ which lie above the level $\operatorname{Im} \mathrm{z}=\mathrm{Y}$ can be computed as (here $\mathrm{y}=\rho_{\mathrm{sc}}(\mathrm{E}) \mathrm{NY}$)

$$
\int_{-2}^{2} \rho_{\mathrm{sc}}(\mathrm{E}) \mathrm{dE} \int_{\mathrm{y}}^{\infty} \tilde{\rho}\left(\mathrm{E}, \mathrm{y}^{\prime}\right) \mathrm{dy}^{\prime} \sim \frac{\mathrm{e}^{-\mathrm{y}\left(\gamma+\gamma^{-1}\right)}}{\mathrm{y}} \mathrm{I}_{1}(2 \mathrm{y})
$$

where I_{1} is the modified Bessel function.

Random band matrices

$$
\mathrm{H}=\left(\begin{array}{ccccccccccccccc}
. & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
. & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
. & . & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
. & . & . & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
. & . & . & . & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & . & . & . & . & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & . & . & . & . & . & . & . & . & . & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & . & . & . & . & . & . & . & . & . & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & . & . & . & . & . & . & . & . & . & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & . & . & . & . & . & . & . & . & . & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & . & . & . & . & . & . & . & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . & . & . & . & . & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . & . & . & . & . & .
\end{array}\right)
$$

Density is still semicircle if the width of the band $\mathrm{W} \rightarrow \infty$ together with N . However, varying W , one can observe the transition in the local statistics

Conjecture (in the bulk of the spectrum):

$\mathrm{W} \gg \sqrt{\mathrm{N}}$	Delocalization, GUE statistics
$\mathrm{W} \ll \sqrt{\mathrm{N}}$	Localization, Poisson statistics

Block random band matrices (Wegner model)

One of the possible realization of RBM is

$$
\mathrm{H}=\left(\begin{array}{ccccccc}
\mathrm{A}_{1} & \mathrm{~B}_{1} & 0 & 0 & 0 & \ldots & 0 \\
\mathrm{~B}_{1}^{*} & \mathrm{~A}_{2} & \mathrm{~B}_{2} & 0 & 0 & \ldots & 0 \\
0 & \mathrm{~B}_{2}^{*} & \mathrm{~A}_{3} & \mathrm{~B}_{3} & 0 & \ldots & 0 \\
. & . & \mathrm{B}_{3}^{*} & . & . & . & . \\
. & . & . & . & . & \mathrm{A}_{\mathrm{n}-1} & \mathrm{~B}_{\mathrm{n}-1} \\
0 & . & . & . & 0 & \mathrm{~B}_{\mathrm{n}-1}^{*} & \mathrm{~A}_{\mathrm{n}}
\end{array}\right)
$$

$\mathrm{A}_{\mathrm{j}}-\mathrm{GUE} \mathrm{W} \times \mathrm{W}$ matrices with variance $(1-2 \beta) / \mathrm{W} ; \mathrm{B}_{\mathrm{j}}$ - Ginibre $\mathrm{W} \times \mathrm{W}$ matrices with variance β / W, so the variance of entries in each (i, j)-block $(\mathrm{i}, \mathrm{j}=1, . ., \mathrm{n})$ is J_{jk} with $\mathrm{J}=\mathrm{I}_{\mathrm{n}} / \mathrm{W}+\beta \Delta_{\mathrm{n}} / \mathrm{W}, \beta<\frac{1}{4}$.

Since the size of the matrix is $\mathrm{N}=\mathrm{Wn}$, the transition should happen at $\mathrm{W} \sim \mathrm{n}$.
Gaussian case results (without deformation):

- M. Shcherbina, TS'21: GUE local statistics $W \gg N^{1 / 2}(W \gg n)$
- Goldstein '22: Localization and Poisson statistics $\mathrm{W} \ll \mathrm{N}^{1 / 2}(\mathrm{~W} \ll \mathrm{n})$

Now we consider $\mathcal{H}=\mathrm{H}+\mathrm{i} \Gamma$, where H is a Gaussian block band matrix above, and $\Gamma=\operatorname{diag}\left\{\gamma_{1}, \ldots, \gamma_{\mathrm{M}}, 0, \ldots, 0\right\}$. Recall we need to study

$$
\mathrm{Z}_{\beta \mathrm{nW}}\left(\kappa, \mathrm{z}_{1}, \mathrm{z}_{2}\right)=\mathbb{E}\left[\frac{\operatorname{det}\left\{\left(\mathcal{H}-\mathrm{z}_{1}\right)\left(\mathcal{H}-\mathrm{z}_{1}\right)^{*}+\frac{\kappa^{2}}{\mathrm{~N}^{2}}\right\}}{\operatorname{det}\left\{\left(\mathcal{H}-\mathrm{z}_{2}\right)\left(\mathcal{H}-\mathrm{z}_{2}\right)^{*}+\frac{\kappa^{2}}{\mathrm{~N}^{2}}\right\}}\right],
$$

where $\mathrm{z}_{\mathrm{l}}=\mathrm{E}+\frac{\mathrm{x}_{1}}{\mathrm{~N}}+\frac{\mathrm{i} \mathrm{y}_{\mathrm{l}}}{\mathrm{N}}, \quad \mathrm{l}=1,2$.
Generally, similarly to GUE case, one can write an integral representation for $\mathrm{Z}_{\beta \mathrm{nW}}\left(\kappa, \mathrm{z}_{1}, \mathrm{z}_{2}\right)$ and consider the limit $\mathrm{N}, \mathrm{W} \rightarrow \infty, \mathrm{W} \gg \sqrt{\mathrm{N}}$. This representation will give a complicated statistical mechanic system on the lattice $\mathbb{Z} \cap[1, \mathrm{n}]$ whose "spins" are 4×4 supermatrices (i.e., matrices containing both usual complex and Grassmann (anticommuting) variables).
However, it is much easier to consider first so-called sigma-model approximation, which is often used by physicists to study complicated statistical mechanics systems.
Mathematically, we first rescale $\beta \rightarrow \beta / \mathrm{W}$ (so the covariance become $\left.\mathrm{J}=\mathrm{I}_{\mathrm{n}} / \mathrm{W}+\beta \Delta_{\mathrm{n}} / \mathrm{W}^{2}\right)$, and then first consider the limit $\mathrm{W} \rightarrow \infty(\beta$ and n are fixed), and then in the obtained model consider the limit $\beta, \mathrm{n} \rightarrow \infty$ (delocalized regime will correspond to $\beta \gg \mathrm{n}$).

Theorem (M. Shcherbina, TS '23)

- if $\mathrm{J}=\mathrm{I}_{\mathrm{n}} / \mathrm{W}+\beta \Delta_{\mathrm{n}} / \mathrm{W}^{2}$, then, as $\mathrm{W} \rightarrow \infty$,

$$
\mathrm{Z}_{\beta \mathrm{nW}}\left(\kappa, \mathrm{z}_{1}, \mathrm{z}_{2}\right) \rightarrow \mathrm{Z}_{\beta \mathrm{n}}\left(\kappa, \mathrm{z}_{1}, \mathrm{z}_{2}\right)
$$

where $\mathrm{Z}_{\beta \mathrm{n}}\left(\kappa, \mathrm{z}_{1}, \mathrm{z}_{2}\right)$ is a sigma-model approximation (defined below).

- the asymptotic behavior of the sigma-model approximation $\mathrm{Z}_{\beta \mathrm{n}}\left(\kappa, \mathrm{z}_{1}, \mathrm{z}_{2}\right)$ in the delocalized regime $\beta \gg \mathrm{n}$ coincides with those for GUE.

Corollary

The density of the imaginary parts of complex eigenvalues of $\mathrm{H}_{\text {eff }}=\mathrm{H}+\mathrm{i} \Gamma$ for the Gaussian block band matrices H and $\Gamma=\operatorname{diag}\left\{\gamma_{1}, \ldots, \gamma_{\mathrm{M}}, 0, \ldots, 0\right\}$ in the regime $\mathrm{W} \gg \mathrm{n}$ coincides with density (1) obtained for GUE in a sigma-model approximation.

On a physical level of rigour, the counterpart is also known:

- Fyodorov, Skvortsov, Tikhonov '22: in the regime $\mathrm{W} \ll \mathrm{n}\left(\mathrm{W} \ll \mathrm{N}^{1 / 2}\right)$ the density is different!

How the sigma-model approximation looks like?

$$
\begin{aligned}
\mathrm{Z}_{\beta \mathrm{n}}\left(\kappa, \mathrm{z}_{1}, \mathrm{z}_{2}\right)=\mathrm{e}^{\mathrm{E}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)} \int & \exp \left\{-\frac{\tilde{\beta}}{4} \sum \operatorname{Str}_{\mathrm{j}} \mathrm{Q}_{\mathrm{j}-1}+\frac{\mathrm{c}_{0}}{2 \mathrm{n}} \sum \operatorname{Str} \mathrm{Q}_{\mathrm{j}} \Lambda_{\kappa, \mathrm{y}_{1}, \mathrm{y}_{2}}\right\} \\
& \times \prod_{\mathrm{a}=1}^{\mathrm{M}} \operatorname{Sdet}^{-1}\left(\mathrm{Q}_{1}-\frac{\mathrm{iE}}{2 \pi \rho(\mathrm{E})}+\frac{\mathrm{i} \gamma_{\mathrm{a}}}{\pi \rho(\mathrm{E})} \mathcal{L} \Sigma\right) \mathrm{dQ}
\end{aligned}
$$

where $\tilde{\beta}=(2 \pi \rho(\mathrm{E}))^{2} \beta, \mathrm{Q}_{\mathrm{j}}$ are 4×4 super-matrices depending on 4 Grassmann parameters, and 2×2 unitary matrix U_{j} and hyperbolic matrix $S_{j}, Q_{j}^{2}=I$, and

$$
\Lambda_{\kappa, \mathrm{y}_{1}, \mathrm{y}_{2}}=\left(\begin{array}{cccc}
\kappa & -\mathrm{iy}_{1} & 0 & 0 \\
\mathrm{iy} & -\kappa & 0 & 0 \\
0 & 0 & \kappa & -\mathrm{iy}_{2} \\
0 & 0 & \mathrm{iy}_{2} & -\kappa
\end{array}\right), \quad \mathcal{L}=\left(\begin{array}{cc}
\mathrm{I}_{2} & 0 \\
0 & -\mathrm{I}_{2}
\end{array}\right), \quad \Sigma=\left(\begin{array}{cc}
\sigma & 0 \\
0 & \sigma
\end{array}\right) .
$$

Analysis is based on the supersymmetric transfer matrix approach (proposed by Efetov'82, Fyodorov, Mirlin '91-94), so we write

$$
\mathrm{Z}_{\beta \mathrm{n}}\left(\kappa, \mathrm{z}_{1}, \mathrm{z}_{2}\right)=\left(\mathcal{K}_{\beta \mathrm{n}}^{\mathrm{n}-1} \mathrm{f}, \mathrm{~g}\right)
$$

where $\mathcal{K}_{\beta \mathrm{n}}$ is an integral operator with the kernel

$$
\mathrm{K}_{\beta \mathrm{n}}\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}\right)=\exp \left\{\mathrm{F}\left(\mathrm{Q}_{1}\right) / 2\right\} \exp \left\{-\frac{\tilde{\beta}}{4} \operatorname{Str} \mathrm{Q}_{1} \mathrm{Q}_{2}\right\} \exp \left\{\mathrm{F}\left(\mathrm{Q}_{2}\right) / 2\right\}
$$

with $F(Q)=\frac{\mathrm{c}_{0}}{2 \mathrm{n}} \operatorname{Str} \mathrm{Q} \wedge_{\kappa, \mathrm{y}_{1}, \mathrm{y}_{2}}$.
The main task is to perform the spectral analysis of $\mathcal{K}_{\beta \mathrm{n}}$.

Sample covariance case

One can apply the same techniques to the deformed sample covariance matrices, i.e. to $H_{\text {eff }}=H+i \Gamma$ with $H=n^{-1} X^{*} X$ where X is a rectangular $\mathrm{m} \times \mathrm{n}$ matrix with iid mean zero variance 1 entries (in our case Gaussian), and we assume $\mathrm{m} / \mathrm{n} \rightarrow \mathrm{c} \in[1,+\infty)$.
Marchenko-Pastur law:
$\rho_{\mathrm{mp}}(\mathrm{E})=(2 \pi \mathrm{E})^{-1} \sqrt{\left(\lambda_{+}-\mathrm{E}\right)\left(\mathrm{E}-\lambda_{-}\right)}, \quad \mathrm{E} \in\left(\lambda_{+}, \lambda_{-}\right), \quad \lambda_{ \pm}=(1 \pm \sqrt{\mathrm{c}})^{2}$.

Theorem (TS'23)

The density of the imaginary parts of complex eigenvalues of $\mathrm{H}_{\text {eff }}=\mathrm{H}+\mathrm{i} \Gamma$ for Gaussian sample covariance matrices H and $\Gamma=\operatorname{diag}\left\{\gamma_{1}, \ldots, \gamma_{M}, 0, \ldots, 0\right\}$ is similar to the GUE case. If $\mathrm{M}=1$, it is

$$
\rho(\mathrm{E}, \mathrm{y})=-\frac{\mathrm{d}}{\mathrm{dy}}\left(\mathrm{e}^{-\mathrm{y} \tau} \frac{\sinh \mathrm{y}}{\mathrm{y}}\right)
$$

where $\mathrm{z}=\mathrm{E}+\mathrm{iy} /\left(\mathrm{n} \rho_{\mathrm{mp}}(\mathrm{E})\right), \tau=\frac{1}{2 \pi \rho_{\mathrm{mp}}(\mathrm{E})}\left(\frac{\gamma}{\mathrm{E}}+\frac{1}{\gamma}\right)$
(Recall: for GUE $\tau=\frac{1}{2 \pi \rho(\mathrm{E})}\left(\gamma+\gamma^{-1}\right)$)

Corrected conjecture (Fyodorov)

For all Hermitian matrices with a local behaviour of GUE type the density $\rho(\mathrm{z})$ with $\mathrm{z}=\mathrm{E}+\mathrm{iy} / \mathrm{n} \rho_{\mathrm{H}}(\mathrm{E})$ is defined by formula above with
$\tau=\frac{\mathrm{R}(\mathrm{E})}{2 \pi \rho_{\mathrm{H}}(\mathrm{E})}\left(\tilde{\gamma}+\tilde{\gamma}^{-1}\right)$ and $\tilde{\gamma}=\gamma \cdot \mathrm{R}(\mathrm{E})$ where $\mathrm{R}(\mathrm{E})=\lim _{\eta \rightarrow+0}\left|\mathbb{E}\left(\mathrm{G}_{\mathrm{ii}}(\mathrm{z})\right)\right|$ and
$\mathrm{G}=(\mathrm{H}-\mathrm{z})^{-1}, \mathrm{z}=\mathrm{E}+\mathrm{i} \eta$ (this limit is actually the Stieltjes transform of ρ_{H} at point E).

For the GUE case the Stieltjes transform is

$$
\mathrm{m}_{\mathrm{sc}}(\mathrm{E})=\frac{-\mathrm{E}+\mathrm{i} \sqrt{4-\mathrm{E}^{2}}}{2} \Longrightarrow\left|\mathrm{~m}_{\mathrm{sc}}(\mathrm{E})\right|=1 \Longrightarrow \tau=\frac{1}{2 \pi \rho_{\mathrm{sc}}(\mathrm{E})}\left(\gamma+\gamma^{-1}\right)
$$

For the Marchenko-Pastur law the Stieltjes transform is

$$
\begin{aligned}
\mathrm{m}_{\mathrm{mp}}(\mathrm{E}) & =\frac{-(\mathrm{E}+1-\mathrm{c})+\mathrm{i} \sqrt{2 \mathrm{Ec}+2 \mathrm{E}+2 \mathrm{c}-\mathrm{E}^{2}-\mathrm{c}^{2}-1}}{2 \mathrm{E}} \\
& \Longrightarrow\left|\mathrm{~m}_{\mathrm{mp}}(\mathrm{E})\right|=\mathrm{E}^{-1 / 2} \Longrightarrow \tau=\frac{1}{2 \pi \rho_{\mathrm{mp}}(\mathrm{E})}\left(\frac{\gamma}{\mathrm{E}}+\frac{1}{\gamma}\right) .
\end{aligned}
$$

