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Model
We are going to consider the random matrices of the form

Heff = H + iΓ,

where H is a random matrix ensemble with an appropriate symmetry (e.g.,
Hermitian or real symmetric), and Γ is a positive deformation of a constant
rank M.
Most classical random matrix ensembles (such as Gaussian ensembles
GUE/GOE, Wigner matrices, β-ensembles, etc.) are invariant under the
unitary transformations, so one can consider

Γ =



γ1 0 . . . . . . 0 . . . 0
0 γ2 0 . . . 0 . . . 0
...

...
. . .

...
...

...
...

0 . . . 0 γM 0 . . . 0
0 . . . . . . 0 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . 0 0 . . . 0


.

For the most part of the talk we restrict ourself to the case of Hermitian
matrices and rank-one perturbation, i.e. Γ = diag{γ, 0, . . . , 0}.
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Results for real perturbations

There are a lot of interesting works for the case of real deformation,

Heff = H + Γ

In this situation the eigenvalues are real, the main part of the spectrum does
not change but some “outlier" can be separated as γ’s grows and we observe so
called BBP transition.

Baik, Ben Arous, and Peche (2005)
Peche (2006)
Capitaine, Donati-Martin, Feral (2009)
Benaych-Georges, Guionnet, Maida (2011)
Knowles, Yin (2014)
. . .
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Anti-Hermitian perturbation

If we return to the anti-Hermitian deformation Heff = H + iΓ, then the
situation is much different since Heff is not Hermitian anymore, and thus has
complex eigenvalues.
However, in contrast to the classical non-Hermitian models such as Ginibre
ensemble, if M is fixed and N→∞, matrices Heff are weakly non-Hermitian.
It is straightforward to check that for γ > 0 (rank-one case) the eigenvalues of
Heff has the form

λj(γ) = λj(H) + ζj(γ), Im ζj > 0

Moreover, since and eigenvectors {Ψj} of H (e.g. for GUE) are uniformly
distributed over the sphere, it is naturally to expect that

ζj(γ) ∼ iγ(E11Ψj,Ψj) ∼ in−1yj

Hence it appears that the planar density of eigenvalues is concentrated in the
strip Im z ∼ n−1
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This is indeed the case, and moreover one can show that for GUE (and, more
generally, for Wigner matrices) the eigenvalues of Heff are all in the upper half
of the complex plane and for N large they all, except possibly one outlier, lie
just above the interval [−2, 2] of the real line. The presence of the outlier is
determined by the value of γ (γ < 1 corresponds to no outliers; γ > 1
corresponds to one outlier lying much higher in the complex plane, its
imaginary part is about γ − 1/γ).
Some results in this direction:

O’Rourke, Renfrew (2014)
O’Rourke, Wood (2017)
Rochet (2017)
Dubach, Erdös (2022)
Fyodorov, Khoruzhenko, Poplavskyi (2023)
. . .
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Apart from the mathematical curiosity, there is also motivation coming from
physics. In the physics literature, the eigenvalues of Heff are associated with
the zeroes of a scattering matrix in the complex energy plane, and their
complex conjugates with the poles of the same scattering matrix, known as
“resonances”. The latter are obviously the eigenvalues of matrices Heff = H+ iΓ
with γ’s replaced by −γ’s. In this context the eigenvalues imaginary part is
associated with the “resonance width" (see Verbaarschot, Weidenmüller,
Zirnbauer ’85; Sokolov, Zelevinsky ’89; Fyodorov, Sommers ’96,... )

In this context, one of the interesting questions about the spectral statistics of
Heff is the distribution of Im zi (as was mentioned above, the planar density of
the eigenvalues is concentrated in the strip Im z ∼ N−1, so all but finitely
many Im zi ∼ N−1.
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Some results

GUE case (and some related models)
Haake, Izrailev, Lehmann, Saher, Sommers ’92
Fyodorov, Sommers ’96
Fyodorov, Sommers ’97
Fyodorov, Khoruzhenko ’99
Fyodorov, Mehlig ’02
Fyodorov, Sommers ’03

For the exact formulas for joint eigenvalue density for rank-one perturbation
of β-ensembles see also

Kozhan ’17 (rank one perturbation of β-ensembles), Killip, Kozhan’17
(β-circular ensembles), Alpan, Kozhan ’21 (same for chiral Gaussian
β-ensembles)
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General non-Hermitian random matrices: methods

Logarithmic potential approach (by Girko)
Based on the formula:

ν(ζ, ζ̄) =
1
2π

∆ζ

∫
ν(z, z̄) log |ζ − z|dzdz̄,

Hence, introducing X(z) = (Heff − z)(Heff − z)∗, we have

NN[h] =
∑
i

h(zi, z̄i) =
∑
j

1
4π

∫
h(z, z̄)∆z log |zj − z|2dzdz̄

=
1
4π

∫
∆h(z, z̄) · log detX(z)dzdz̄

Since X(z) is a hermitian matrix, one can find its limiting spectral distribution
µ
(z)
n (λ). Then

log detX(z) =

∫ ∞
0

log λ dµ(z)
N (λ)
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In particular,

E{NN[h]} =
1
4π

∫
∆h(z, z̄) · E{log detX(z)}dzdz̄

=
1
4π

∫
h(z, z̄) ·∆E{log detX(z)}dzdz̄

and hence averaged density of the eigenvalues zj = Xj + iYj

ρN(X,Y) =
1
N
E{

n∑
j=1

δ(X−Xj)δ(Y −Yj)}

can be computed as

ρN(X,Y) =
1
πN

∂2

∂z∂z̄
E{log detX(z)}

where z = X + iY.

T. Shcherbina (UW) Finite-rank perturbations of RM 01/06/2023 9 / 20



As we discussed, we are interested in the scale Im z ∼ N−1, so one need to
define the rescaled version of ρN(X,Y) for y = NρH(X)Y:

ρ̃N(X, y) = 1
NρH(X)E{

n∑
j=1

δ(X−Xj)δ(y − ρH(X)NYj)}, X ∈ bulk(σ(H)).

We are interested in the limit of this measure when the size of matrix N goes
to infinity.
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Averaging of logarithm
Averaging of logarithm (by Fyodorov and Sommers’96)
Technically, instead studying of E{log detX(z)} it is convenient to introduce
the generating function

ZN(κ, z1, z2) = E
{det(X(z1) + κ2/N2)

det(X(z2) + κ2/N2)

}
where z1 and z2 are auxiliary spectral parameters in the vicinity of E + iy/N:

zl = El +
iyl
N
, El = E +

xl
N
, l = 1, 2.

Given ZN(κ, z1, z2), the density can be obtained using the following identity:

ρ̃N(E, y)

=
1
4π

lim
κ→0

(
∂

∂y1

(
lim

y2→y1

∂ZN
∂y2

)
+

∂

∂x1

(
lim

x2→x1

∂ZN
∂x2

)) ∣∣∣∣∣ y1 = y,
x1 = x2 = 0
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Integral representation for Z(κ, z1, z2) (for GUE)

Z(κ, z1, z2) =n4
∫
|u1|=1

∫
|u2|=1

du1du2
∫ ∞
−∞

da1da2

exp{n(φ(u1, zκ,1) + φ(u2, zκ,1)− φ(a1, zκ,2)− φ(a2, zκ,2))}
× F(u1, u2, a1, a2,U, S)dUdS

where U is a unitary 2× 2 matrix ( U ∈ Uj ∈ Ů(2)) and S is a hyperbolic 2× 2
matrix (S ∈ Ů(1, 1))

zκ,l = E + in−1
√

y2l + κ2, φ(u, z) =
u2

2
− izu− log u

F is a rather complicated function of u1, u2, a1, a2,U, S which does not contain
n in the main order.

The analysis of Z(z, zb) is a standard but rather involved problem of the
saddle point method, since there are 4 saddle points and the factor n4 before
the integral makes it necessary to take into account all terms of the forth
order in the expansion near the saddle points.
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Density for GUE plus rank 1 complex perturbation

Fyodorov and Sommers ’96
Recall that z = E + iy/nρH(E).

ρ̃(E, y) = lim
N→∞

ρ̃N(E, y) = − d
dy

(
e−yτ

sinh y
y

)
(1)

where τ = (2πρH(E))−1
(
γ + γ−1

)
and

ρH(E) = ρsc(E) =
1
2π

√
4− E2, E ∈ (−2, 2)

Given ρ̃(E, y), expected fraction of the eigenvalues of Heff which lie above the
level Im z = Y can be computed as (here y = ρsc(E)NY)

2∫
−2

ρsc(E)dE
∞∫
y

ρ̃(E, y′)dy′ ∼ e−y(γ+γ
−1)

y
I1(2y)

where I1 is the modified Bessel function.
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Random band matrices

H =



· · · · · 0 0 0 0 0 0 0 0 0 0
· · · · · · 0 0 0 0 0 0 0 0 0
· · · · · · · 0 0 0 0 0 0 0 0
· · · · · · · · 0 0 0 0 0 0 0
· · · · · · · · · 0 0 0 0 0 0
0 · · · · · · · · · 0 0 0 0 0
0 0 · · · · · · · · · 0 0 0 0
0 0 0 · · · · · · · · · 0 0 0
0 0 0 0 · · · · · · · · · 0 0
0 0 0 0 0 · · · · · · · · · 0
0 0 0 0 0 0 · · · · · · · · ·
0 0 0 0 0 0 0 · · · · · · · ·
0 0 0 0 0 0 0 0 · · · · · · ·


Density is still semicircle if the width of the band W→∞ together with N.
However, varying W, one can observe the transition in the local statistics

Conjecture (in the bulk of the spectrum):
W�

√
N Delocalization, GUE statistics

W�
√
N Localization, Poisson statistics
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Block random band matrices (Wegner model)
One of the possible realization of RBM is

H =


A1 B1 0 0 0 . . . 0
B∗1 A2 B2 0 0 . . . 0
0 B∗2 A3 B3 0 . . . 0
. . B∗3 . . . .
. . . . . An−1 Bn−1
0 . . . 0 B∗n−1 An


Aj – GUE W ×W matrices with variance (1− 2β)/W; Bj - Ginibre W ×W
matrices with variance β/W, so the variance of entries in each (i, j)-block
(i, j = 1, ..,n) is Jjk with J = In/W + β∆n/W, β < 1

4 .

Since the size of the matrix is N = Wn, the transition should happen at
W ∼ n.
Gaussian case results (without deformation):

M. Shcherbina, TS’21: GUE local statistics W� N1/2 (W� n)
Goldstein ’22: Localization and Poisson statistics W� N1/2 (W� n)
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Now we consider H = H + iΓ, where H is a Gaussian block band matrix above,
and Γ = diag{γ1, . . . , γM, 0, . . . , 0}. Recall we need to study

ZβnW(κ, z1, z2) = E

det
{

(H− z1)(H− z1)∗ +
κ2

N2

}
det
{

(H− z2)(H− z2)∗ +
κ2

N2

}
 ,

where zl = E +
xl
N

+
iyl
N
, l = 1, 2.

Generally, similarly to GUE case, one can write an integral representation for
ZβnW(κ, z1, z2) and consider the limit N,W→∞, W�

√
N. This

representation will give a complicated statistical mechanic system on the
lattice Z ∩ [1, n] whose “spins" are 4× 4 supermatrices (i.e., matrices
containing both usual complex and Grassmann (anticommuting) variables).
However, it is much easier to consider first so-called sigma-model
approximation, which is often used by physicists to study complicated
statistical mechanics systems.
Mathematically, we first rescale β → β/W (so the covariance become
J = In/W + β∆n/W2), and then first consider the limit W→∞ (β and n are
fixed), and then in the obtained model consider the limit β,n→∞
(delocalized regime will correspond to β � n).
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Theorem (M. Shcherbina, TS ’23)
if J = In/W + β∆n/W2, then, as W→∞,

ZβnW(κ, z1, z2)→ Zβn(κ, z1, z2)

where Zβn(κ, z1, z2) is a sigma-model approximation (defined below).
the asymptotic behavior of the sigma-model approximation Zβn(κ, z1, z2)
in the delocalized regime β � n coincides with those for GUE.

Corollary
The density of the imaginary parts of complex eigenvalues of Heff = H + iΓ for
the Gaussian block band matrices H and Γ = diag{γ1, . . . , γM, 0, . . . , 0} in the
regime W� n coincides with density (1) obtained for GUE in a sigma-model
approximation.

On a physical level of rigour, the counterpart is also known:
Fyodorov, Skvortsov, Tikhonov ’22: in the regime W� n (W� N1/2)
the density is different!
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How the sigma-model approximation looks like?

Zβn(κ, z1, z2) = eE(x1−x2)

∫
exp

{
− β̃

4

∑
StrQjQj−1 +

c0
2n

∑
StrQjΛκ,y1,y2

}
×

M∏
a=1

Sdet−1
(
Q1 −

iE
2πρ(E)

+
iγa

πρ(E)
LΣ
)
dQ,

where β̃ = (2πρ(E))2β, Qj are 4× 4 super-matrices depending on 4 Grassmann
parameters, and 2× 2 unitary matrix Uj and hyperbolic matrix Sj, Q2

j = I, and

Λκ,y1,y2 =


κ −iy1 0 0
iy1 −κ 0 0
0 0 κ −iy2
0 0 iy2 −κ

 , L =

(
I2 0
0 −I2

)
, Σ =

(
σ 0
0 σ

)
.
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Analysis is based on the supersymmetric transfer matrix approach (proposed
by Efetov’82, Fyodorov, Mirlin ’91-94), so we write

Zβn(κ, z1, z2) = (Kn−1
βn f, g)

where Kβn is an integral operator with the kernel

Kβn(Q1,Q2) = exp{F(Q1)/2} exp
{
− β̃

4
StrQ1Q2

}
exp{F(Q2)/2}

with F(Q) =
c0
2n

StrQΛκ,y1,y2 .
The main task is to perform the spectral analysis of Kβn.
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Sample covariance case
One can apply the same techniques to the deformed sample covariance
matrices, i.e. to Heff = H + iΓ with H = n−1X∗X where X is a rectangular
m× n matrix with iid mean zero variance 1 entries (in our case Gaussian), and
we assume m/n→ c ∈ [1,+∞).
Marchenko-Pastur law:
ρmp(E) = (2πE)−1

√
(λ+ − E)(E− λ−), E ∈ (λ+, λ−), λ± = (1±

√
c)2.

Theorem (TS’23)
The density of the imaginary parts of complex eigenvalues of Heff = H + iΓ for
Gaussian sample covariance matrices H and Γ = diag{γ1, . . . , γM, 0, . . . , 0} is
similar to the GUE case. If M = 1, it is

ρ(E, y) = − d
dy

(
e−yτ

sinh y
y

)
where z = E + iy/(nρmp(E)), τ = 1

2πρmp(E)

(
γ
E + 1

γ

)
(Recall: for GUE τ = 1

2πρ(E)

(
γ + γ−1

)
)
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Corrected conjecture (Fyodorov)
For all Hermitian matrices with a local behaviour of GUE type the density
ρ(z) with z = E + iy/nρH(E) is defined by formula above with
τ = R(E)

2πρH(E)

(
γ̃ + γ̃−1

)
and γ̃ = γ · R(E) where R(E) = lim

η→+0
|E(Gii(z))| and

G = (H− z)−1, z = E + iη (this limit is actually the Stieltjes transform of ρH
at point E).

For the GUE case the Stieltjes transform is

msc(E) =
−E + i

√
4− E2

2
=⇒ |msc(E)| = 1 =⇒ τ = 1

2πρsc(E)

(
γ + γ−1

)
For the Marchenko-Pastur law the Stieltjes transform is

mmp(E) =
−(E + 1− c) + i

√
2Ec + 2E + 2c− E2 − c2 − 1

2E
=⇒ |mmp(E)| = E−1/2 =⇒ τ = 1

2πρmp(E)

(
γ
E + 1

γ

)
.
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