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Simple exclusion in 1D
We consider the simple exclusion process on Z consisting of a
collection of continuous time RW’s, with nearest-neighbor jump
rates p(±1) going from x to x ± 1, where jumps to occupied
locations are suppressed.
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Although the particles are not labeled, it is a natural problem to
‘tag’ say one of them, and to follow its motion {Xt}t≥0.

–This motion is undoubtedly influenced by the other particles,
including ‘bulk’ mass notions,

but it does have a mind of its own,
especially in empty space.
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Notation

Let
ηt = {ηt(x) : x ∈ Z}

be the configuration of the process at time t where

η(x) =
{

1 if x occupied
0 otherwise.

The process is Markovian with generator

Lf (η) =
∑
x ,±

p(±1)η(x)(1− η(x ± 1))
{

f (ηx ,x±1)− f (η)
}
.



TASEP p(1) = 1, p(−1) = 0.
ASEP p = p(1) > p(−1) = 1− p.
SSEP p(1) = p(−1) = 1/2.

Stationary states

νρ =
∏

x

Bern(ρ)

are invariant for 0 ≤ ρ ≤ 1.



Question

What is the typical behavior of a tagged particle in ASEP,
starting from a stationary state,

when conditioned to deviate to an atypical position?

–That is, what is the likely structure of the process that allows a
deviation?
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Typical LLN behavior

Starting from νρ(·|η(0) = 1), with respect to ASEP,
introducing a scaling factor N,

1
N

XNt → γ[1− ρ]t ,

as N ↑ ∞, where γ = p(1)− p(−1).

–implicit in the more general works,
Saada ’87, Rezakhanlou ’94.



Exact and approximate formulas

For TASEP, from queuing notions, e.g. Burke’s theorem,
starting from νρ(·|η(0) = 1),

Xt is exactly a Poisson process with rate 1− ρ (!)

–However, in ASEP, Ferrari-Fontes showed an approximation:

Xt = Poiss(t) + ξt

where Poiss(·) is a Poisson process with rate γ(1− ρ)
and ξt has a uniform in time bounded exponential moment,
E [exp{κ(p(1), ρ)ξt}] <∞.



Question rephrased

Starting from νρ(·|η(0) = 1),

in ASEP, how does the system organize
to achieve a deviation

1
N

XNt ∼ A 6= γ(1− ρ)t ,

as N ↑ ∞ for a fixed t > 0?
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Rate function in TASEP

From the exact relation,
in TASEP starting from νρ(·|η(0) = 1), we get

P
(

1
N XNt ∼ A

)
∼ exp

{
− N I(A)

}
as N ↑ ∞,

where
I(A) = A log

A
(1− ρ)t

− A + (1− ρ)t .

–On the other hand, in ASEP, the Ferrari-Fontes relation gives
a non-sharp large deviation upper estimate.



Main goals

We discuss strategies for lowerbounds, and also upperbounds
in ASEP, which when they match identify the large deviation
rate function in certain regions.
In particular, an ‘upper tail’ LDP is established.

–We will focus on TASEP to be concrete, but most of the
arguments hold for ASEP as well. In TASEP, we have the
advantage of knowing what cost to achieve, guiding some of
the work.

Note: We often fix t = 1 to simplify notation. In this case,
typically

1
N

XN ∼ 1− ρ.



Comment in SSEP

Before going further, we remark in SSEP, starting from
stationary initial conditions, that large deviations are known:

P
(

XN ∼
√

NA
)
∼ exp

{
−
√

NI(A)
}
.

Here, the rate function I can be understood as a certain
contraction of the rate function for the large deviations of the
empirical measure (Diffusive scale).

A more explicit formula is also known.

–Derrida-Gerschenfeld 2009, SS-Varadhan 2013,
Imamura-Mallick-Sasamoto 2017



References for the current

As the tagged particle has connection to local ‘currents’ (across
a site), we mention a sample of the work in this vein.

—Upper and lower large deviations bounds for the current in
TASEP (CGM) from deterministic initial condition.

Seppäläinen ’98, Olla-Tsai ’17

–Upper large deviations for the current in ASEP from wedge
(step) initial condition.

Damron-Petrov-Sivakoff ’18, Das-Zhu ’21



TASEP regimes
In TASEP, particles to the left of the origin do not interact with
the tagged particle.

–There are three regimes:
I A ≥ 1
I 1− ρ ≤ A ≤ 1
I 0 ≤ A ≤ 1− ρ

 

t 1

if Hikmet



Sketch: A ≥ 1

In this setting, the tagged particle must change its jump rate
from the apriori rate 1 to something else to have a chance of
reaching A ≥ 1 in macro time t = 1.

–But, for the tagged particle to move, it must not be obstructed.

–Moving a macro amount of particles is quite costly.
An alternative is to remove some particles from the system.
–Such a cost would be O(N), much less than O(N2) cost to
speed-up O(N) particles.



Connection with the ‘bulk’ mass flow

We first recall ‘hydrodynamics’ for (T)ASEP as it will be useful.

–Let ρ0 : R→ [0,1] be an initial condition.

Starting from
νρ0(·) =

∏
x

Bern
(
ρ0
( x

N

))
,

we have the hydrodynamic limit:

πN =
1
N

∑
x

ηNt(x)δx/N ⇒ δρ(t ,x)dx .



Here, ρ = ρ(t , x) satisfies:

∂tρ+ γ∂x
{
ρ(1− ρ)

}
= 0

where ρ is the unique ‘entropy’ solution.

–Rost ’81, Rezakhanlou ’91, Seppalainen ’98



Returning to the tagged particle, since jumps are
nearest-neighbor in TASEP,

{XtN ≥ AN} =

{
AN∑
z=0

ηtN(z) = 0

}
.

–In the continuum, when starting from νρ0(·), let

ht(x) =
∫ x

0
ρ(t ,u)du.

Then,

ht(A) =
∫ A

0
ρ(t ,u)du = 0.

“All initial mass between 0 and A
has flowed beyond A at time t .”



Note ht(x) satisfies

∂tht + (∂xht)(1− ∂xht) = 0.

–After some manipulation, the Hopf-Lax formula solves for the
entropy solution:

hent
t (x) = sup

z

{
h0(y)− tg

(x − z
t
)}

where

g(u) =


1
4(1− u)2 for |u| ≤ 1

0 for u < −1
u for u > 1.



A superexponential estimate

It can be shown that

hent
1 (A) cannot be larger than

1
N

AN∑
z=1

ηN(z),

without incurring super-exponential cost:

lim sup
N↑∞

1
N

logP
(

hent
1 (A) >

1
N

AN∑
z=1

ηN(z) + ε
)
= −∞.

–Equivalently,
∑

z>AN ηN(z) cannot be more than
N
∫∞

AN ρ(t ,u)du; that is to speed up O(N) particles has
super-exponential cost.



Where to remove particles?

Hence, to move 1
N XN ∼ A (recall t = 1),

we have
hent

1 (A) ≤ h1(A) = 0.

–In other words, for z ≥ A− 1,

h0(y) ≤ g(A− z)

=
1
4
(
1− (A− z)

)2
.

–This suggests an initial density where

∂xh0(z) = ρ(0, x)
?
≤ 1

2
(
1− (A− z)

)
+
.



Plotting this is the ‘blue’ initial profile, which flows,
according to the hydrodynamic equation,
to the ‘yellow’ profile at time t = 1.
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The cost of changing the initial profile is

− (A− 1) log(1− ρ)

+

∫ A−1+2ρ

A−1
u0(z) log

u0(z)
ρ

+ (1− u0(z)) log
1− u0(z)

1− ρ
dz

= −A log(1− ρ)− ρ.

–Now, there is room for the tagged particle,
a Poisson rate 1 (unobstructed) process,

to get to AN in time N.



–It’s optimal to change its rate to A > 1, with cost

A logA− A + 1.

–Then, both tagged particle and the particle at (A− 1)N reach
AN at the same macro time 1.

–Adding the costs, we get

A log
A

1− ρ
− A + 1− ρ = I(A).

–In ASEP, we will have to change a birth-death process instead
of a Poisson process. This will give a more general formula for
I(A) involving p and q.



Sketch: 0 ≤ A ≤ 1− ρ

What if A = 0?
That is, the tagged particle doesn’t move, up to time 1?

–One way: The tagged particle’s clock does not ring up to time
1, with cost − log e−1 = 1.

But, this is too large,
compared to what we should achieve,

I(A = 0) = 1− ρ....



–Another way: Try to block with particles.

 



The shock, from Rankine-Huguniot with flux u(1− u), moves at
speed

1− R − L = 1− 1− ρ = −ρ.

–If we maintain the shock,
via a nonentropic solution,
then the tagged particle would be blocked up to time 1.



To compute the cost, we invoke Jensen-Varadhan large
deviations for the empirical measure πN :

P(πN follows ζ) ∼ exp{−NIJV (ζ)}

where

IJV (ζ) = positive charge of ′(∂th(ζ) + ∂xg(ζ))dxdt ′

and h(u) = u log(u) + (1− u) log(1− u) and
g(u) = u(1− u) log u

1−u .

–Jensen-Varadhan 2000; Vilensky 2008; Quastel-Tsai 2022



The IJV cost here of the nonentropy solution is

L− R + LR log
R
L

+ (1− L) log(1− L)− (1− R) log(1− R)

+ L(1− R) log(1− R)− (1− L)R log(1− L)

which reduces to (1− ρ) + ρ log(ρ).

–Adding, to the profile cost, which is −ρ log(ρ), we get

1− ρ = I(A = 0).

–At the moment, we do not a similar formula in ASEP, as the IJV
cost is known only in TASEP.



Upper bounds

Are the costs of these strategies found by minimizing over all
strategies?

–When γ(1− ρ) ≤ A, we can prove this, and so derive an
‘upper tail’ LDP in ASEP.

Hence, this identifies in ASEP the formula for the rate I(A).



Sketch: A ≥ 1

Staying with TASEP to reduce notation, things boil down to
understanding

1
N

logP
( 1

N

AN∑
z=0

ηN(z) = 0
)

∼ 1
N

logP
(

hent
1 (A) ≤ 1

N

AN∑
z=0

ηN(z) = 0
)

≤ − inf
w0:h

ent,w0
1 (A)=0

∫ ∞
0

w0(z) log
w0(z)
ρ

(1− w0(z)) log
1− w0(z)

1− ρ
dz.

–This calculus of variations problem can be solved to yield the
previous initial profiles, when A > 1− ρ. Notably, the optimal
evolutions in the ‘upper tail’ regimes are entropic.



Comments in ASEP

Many estimates carry over, but there is a new category.

–We have mentioned that the LDP holds in the ‘upper tail’ :
A > γ(1− ρ).

In the other categories, we can derive candidate lower bounds.

I A ≥ γ
I γ(1− ρ) ≤ A ≤ γ
I 0 ≤ A ≤ γ(1− ρ)
I A ≤ 0



Form of the rate in the ASEP ‘upper tail’

We can identify, when γ(1− ρ) ≤ A ≤ γ, that the rate is in form

I(A) = A log
A

γ(1− ρ)
− A + γ(1− ρ).

–This corresponds to the Ferrari-Fontes approximation by a
Poisson process with rate γ(1− ρ).



However, as alluded to before, when A ≥ γ,
we derive that

I(A) = A log c − pc − q
c + 1

− γ
{
log(1− ρ) + ρ

}
,

where

c =
A +

√
A2 + 4pq
2p

.

–This is a smaller cost than found from the Ferrari-Fontes
approximation.



Happy birthday to Timo
and best wishes on this occasion!


