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Goal of the talk

Goal 1: Report on what we learned from Timo’s papers.

Goal 2: Complement one of Timo’s breakthrough results, T
1
3 current

fluctuations for ASEP (Balasz-Seppalainen, Order of current variance

and diffusivity in the asymmetric simple exclusion process, Annals

2010).



The model: ASEP

Configuration η(t) ∈ {0, 1}Z of particles performing biased continous

time walk with exclusion.

rate R rate L



Current

Current: net number of particles that cross [ 12 , x+ 1
2 ] in time T .

JT (x) = JT (0)︸ ︷︷ ︸
net flux across 0

−
x∑

i=1

ηi(t).



Current

0 x

t = T

t = 0



Current: Results

Balász-Seppäläinen, for the current in a characteristic direction

x0 := (L−R)(2b− 1)T :

Var(JT (x0)) ≍ T
2
3 .

We have:

ce−Cu3/2T−1/2

≤ P [JT (x0)− E[JT (x0)] > u] ≤ Ce−cu3/2T−1/2

Tail behavior consistent with Baik-Rains limit (Aggarwal, 2016).



2nd class particle

2nd class particle: ASEP dynamics, but 1st class particles take

precedence (switch positions instead of exclusion).

Arise from considering discrepancy between coupled, ordered

configurations ν ≤ η:



Sccond class particle: Results

Balazs-Seppäläinen: position Q(T ) of second class particle started at 0

in a stationary (Bernoulli b) environment for k < 3

E[|Q(T )− x0(T )|k] ≍ T
2
3k,

where

x0(T ) = (L−R)(2b− 1)T.

We show:

P [|Q(T )− x0| > u] ≤ Ce−cu3T−2

.



Ingredients

Two technical inputs come from some of my favorite papers of Timo’s:

1. Microscopic concavity coupling (Bálasz-Seppäläinen)

2. Exponential formula (Elnur-Jianjigian-Seppäläinen)

This is combined with

3. Degeneration from stationary stochastic six vertex model

(Borodin-Corwin-Gorin, Aggarwal)



Stochastic Six Vertex Model

Configurations of arrows entering/exiting vertices of domain in Z2.

At each vertex:

Number of incoming arrows = Number outgoing arrows



Stochastic Six Vertex Model

Six possible configurations, with weights:

1 δ1 1− δ1 δ2 1− δ2 1



Up-right paths

Weight of configuration:

1#type 1δ# type 2
1 (1− δ1)

#type 3δ#type 4
2 (1− δ2)

#type 51#type 6



Stationary Model

There is a stationary version of the model, considered by Aggarwal.

Choose arrow configurations along the boundaries (x, 0) and (0, y) to

be Bernoulli with parameters b1 and b2 such that

b1
1− b1

= κ
b2

1− b2
.

Then the probabilities of incoming and outgoing arrows along

down-right paths are invariant for S6V.



Degneration to ASEP

Consider S6V with

δ1 = ϵL, δ2 = ϵR

with initial data being (b1, b2) such that

b1
1− b1

=
1− δ1
1− δ2

b2
1− b2

.

pi(t): particles in S6V at height t

Xi(t) particles in ASEP Bernoulli b2 data

qi(t) = pi(t)− t.



Degneration to ASEP

For finite S ⊆ Zn:

lim
ϵ→0

P
[
qi1(⌊ϵ−1t1⌋), . . . , qin(⌊ϵ−1tn⌋) ∈ S

]
= P [Xi1(t1), . . . , Xin(tn) ∈ S] .

As a consequence,

lim
ϵ→0

P
[
H(b1,b2)(x+ ⌊ϵ−1t⌋, ⌊ϵ−1t⌋) > r

]
= P [Jt(x) ≥ r] .

Observed in Borodin-Corwin-Gorin, proved by Aggarwal, used

extensively in Aggarwal and Borodin-Aggarwal.



Height function

For a S6V configuration in the rectangle

{x ≤ X, y ≤ Y }

the height function is defined by

H(X,Y ) = net flux of paths across line from origin to (X,Y ).

+1 if the line is traversed left-right, −1 if right-left.



Height function

+1

-1



Asymptotics of the height function

Borodin-Corwin-Gorin identify scaling limit:

lim
ϵ→0

ϵH(ϵ−1x, ϵ−1y) = H(x, y),

for explicitH and Riemann boundary conditions (fixed densities along

the axes). Also show Tracy-Widom limit after centering and rescaling

by ϵ−1/3

Hydrodynamic limit for general boundary conditions by Aggarwal.



Tail estimates

Subject to a characteristic direction condition, for

(y(1− κ))1/3 ≤ u ≤ cy(1− κ),

we have

E
[
H(b1,b2)(x, y)− E[H(b1,b2)(x, y)] > u

]
≥ ce−Cu3/2(y(1−κ))−1/2

,

and

E
[
H(b1,b2)(x, y)− E[H(b1,b2)(x, y)] > u

]
≤ Ce−cu3/2(y(1−κ))−1/2

.



Ideas in the proofs.



Coupling method (a.k.a. Seppäläinen machine)

General strategy, originating in Balázs-Cator-Seppäläinen.

Appears in Timo’s works on O’Connell-Yor, ASEP, zero-range process,

log-Gamma polymer, LPP, etc.

Based on simultaneously estimating two quantities:

Height function (passage time, log partition function, current...)

H(θ, η)

Derivative (time spent on the boundary, first jump, second class

particle...)

Q = ∂θH.



The coupling method heuristic

Stationarity:

H = B(θ) +R(θ, η),

B: increments along [(1, 1), (N, 1)]

R: increments along [(N, 1), (N,M)].

Rearrange:

R = H −B

Var(R) = Var(H) + Var(B)− 2E[BH].



The coupling method heuristic

E[BH] =
d

dδ
E[eδB̄H]

∣∣∣
δ=0

=
d

dδ
(E[H(Bθ,δ)])|δ=0

:= E[Q]

Assume Var(R) = Var(B) (characteristic direction):

Var(H) = 2E[Q].

Exact version of KPZ relation

2χ = ξ.



Convexity

Q =
d

dδ
H(Bθ,δ, η) =: ∂θH.

In his papers, Timo (master of couplings), bounds P (Q > u) in

terms of H by ingenious couplings.

Generally: if θ 7→ H(θ, η) is convex, then for λ > 0:

Q ≤ H(λ, θ)−H(θ, θ)

λ− θ
.



Upper bound for χ

For example, for known integrable models, can typically show:

Q ≲
1

λ− θ

(
|H(θ, θ)|+ |H(λ, λ)|+ |E[H(θ, θ)]− E[H(λ, λ)]|

)
.

We get

Var(H) := V ≤ C

λ− θ
(V 1/2 +N1/2(λ− θ) +N(λ− θ)2).

Optimize:

λ− θ ∼ N−1/3 ⇒ χ =
1

3
.



A remarkable formula

Want to run the previous argument on an exponential scale.

Elnur, Jianjigian and Seppäläinen (EJS): general methdology to get

concentration in stationary models (in their case, exponential LPP)

using a formula due to Rains (2001), with a simple proof.



EJS formula

EJS’s observation: for “any” model with product invariant measure

on a quadrant, in the characteristic direction,

E
[
exp ((θ − η)(H(θ, η)− E[H(θ, θ)])

]
= exp

(
c(η)N(θ − η)3

)
.

Cubic behavior → N1/3 fluctuations.



Consequence

For η < θ:

H(θ, θ) = H(θ, ν) +

∫ θ

η

Q(θ, u)du

≤ H(θ, η) + (θ − η)Q(θ, θ)

Subtract E[H(θ, θ)], multiply by θ − η and exponentiate. Done

provided we can control

E[eϵ
2Q(θ,θ)].

This argument gives moderate deviations on N1/3 scale with u3/2

exponent for all known integrable polymer models, and works for some

non-integrable interacting diffusion models (Landon-S., 2022)



Back to S6V

The height function in the stationary six vertex model has the form:

H(x, y) = horizontal arrows through right side

− vertical arrows through bottom

:= R−B.



EJS for S6V

Choose parameters:

eε
a1

1− a1
=

1− δ1
1− δ2

a2
1− a2

Then:

E
[
exp

(
εH(a1,a2)(x, y)

)]
= (eεa1 + (1− a1))

y(e−εa2 + (1− a2))
x.



Couplings and 2nd class paths

The role of Q is played by second class paths. As in ASEP, we can

couple different boundary conditions for S6V, and look at the

discrepancies between them (“grey paths"). Their distribution

Balázs and Seppäläinen’s famous second class particle arguments

extend to that setting.



Second class paths



Exit point estimate

Let a1 < b1 and a2 < b2. Start a second class path at the bottom left

corner.

P[second class path exits through north]

≲ e−ck + ekE
[
eϵH

(a1,a2)(x,y)
]1/2

E
[
e−ϵH(b1,a2)(x,y)

]1/2
.



Future directions

▶ Lower tail bounds: for some models, geometric argument is

available.

▶ Non product form invariant measures: half-space models.



Thanks a lot for listening & Happy Birthday to Timo!
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