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Random growth interface

Consider a two-dimensional area growing in time. We are interested in
dynamics of the one-dimensional interface.
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interfaceA random growth interface h
is a random map from time
to the space of functions i.e.
h : R+ → RR
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Metric-like models - last passage percolation (LPP)
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Assume Exp(1) distributed and independent weights on the
lattice.
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For any two ordered points x , y on the lattice, we let Lx ,y be the
maximal weight that can be collected by an up-right path connecting x
and y . The unique maximal path is called the geodesic from x to y .
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Metric-like model as growth models
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One can think of metric-like models as growth models or infection
models. For each t > 0, we color a point ’red’ if the distance from the
bottom line to the point is smaller of equal to t .

���������������������������������������������������� A0

Assign weights {h(z)}z∈A0 to the points in A0. Then, for t > 0 we color
the site x ’red’ if and only if

dLPP(A0, x) := supz∈A0
h(z) + L(z, x) ≤ t
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One-type stationary measures

Question: Is there a distribution on h such that up to some random
translation γt ∼ γt+∆?
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γt+∆

Answer: Yes, for any ρ ∈ (0,1) there exists a bi-infinite i.i.d.
random walk hρ such that γ· is stationary and its slope depends
on ρ.
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Two-type stationary measures

Question: Fix 0 < ρ1 < ρ2 < 1. Is there a distribution on (hρ1 ,hρ2)
such that such that up to random translation (γρ1

t , γρ2
t ) ∼ (γρ1

t+∆, γ
ρ2
t+∆)?
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t

γρ1
t+∆

γρ2
t+∆

γρ2
t

Answer: Yes, the stationary multi-type distributions (SMTD)
(hρ1 , . . . ,hρk ) for 0 < ρ1 < ρ2 < . . . < ρk < 1 exists( Fan and
Sepäläinen 18’).
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Coupling all densities at once, the Busemann process

It is possible to couple all {hρ}ρ∈(0,1) on one probability space
such that for any k ∈ Z and 0 < ρ1 < . . . < ρk < 1 the distribution
(hρ1 , . . . ,hρk ) is stationary with respect to the LPP dynamics.

Under this coupling, the process ρ 7→ hρ is the Busemann process
of the exponential LPP.

Busemann process is instrumental in studying infinite geodesics
in metric-like models .

FPP: Newman 90’s, Hoffman 02’, Damron, Hanson, 14’,

LPP: Georgiou, Rassoul-Agha, Seppäläinen 17’-19’
Janjigian, Shen , Balazs, B., Seppäläinen 19’.

Positive temp.: Georgiou, Janjigian, Rassoul-Agha, Seppäläinen,
Yilmaz 15’-19’
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It is believed that the long time behavior of models in the KPZ class is
universal.

The scaling is often referred to as the KPZ scaling (1:2:3) and the
universal limit hKPZ is called the KPZ fixed-point .
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It is believed that the long time behavior of models in the KPZ class is
universal.

The scaling is often referred to as the KPZ scaling (1:2:3) and the
universal limit hKPZ is called the KPZ fixed-point .

hKPZ is a Markov process taking
values in the space of
continuous functions i.e.

t 7→ hKPZ(t , ·) ∈ UC

(Matetski, Quastel, Remenik
16’)
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Scaling limit of (exponential LPP) Busemann process
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Theorem (B. 21’)
Let {hρ}ρ∈(0,1) be the exponential LPP Busemann process. Let

GN
µ (x) = N−1/3

[
h1/2+µN−1/3

(2xN2/3)
]
.

Then GN → G in the Skorohord space D(R,C(R)).

We refer to the limit G as the Stationary Horizon.
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Scaling limit of (exponential LPP) Busemann process
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Conjecture (B. 21’)
The stationary horizon is the unique scaling limit of Busemann
processes of metric-like models in KPZ class.



Scaling limit of (exponential LPP) Busemann process
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Brownian LPP

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The stationary horizon was independently discovered by
Seppäläinen and Sorensen 21’ as the macroscopic
Busemann process of the Brownian LPP.
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Theorem (B., Sorensen, Sepäläinen 22’)
The stationary horizon is the unique stationary multi-type
distribution of the KPZ fixed-point.

Stationary multi type distribution for the KPZ fixed
point
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How universal is the stationary horizon?
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The SH is the scaling limit of the Busemann process
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SMTD in particle systems
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Totally asymmetric simple exclusion process (TASEP)
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Consider a configuration of particles on Z. Assume that each
site of Z is equipped with a Poisson clock such that all clocks
are independent. If the site x is occupied by a particle, at the
ring of the clock at site x , the particle attempts a jump to site
x + 1, which is executed only if there is no particle at site
x + 1.

Introduced by Spitzer in 1970.
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Particles with classes
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One can introduce particles with priority. First class particles treat
second class particle as holes, while second class particles see
the first class particles as particles.

1st
class 2nd
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Particles with classes - more than two classes
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3rd
class

It is possible to study configurations with more than 2 classes (the
number of classes can be infinite!).
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Multi-type stationary measures
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Are there stationary measures for the multi-type exclusion
process?
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Are there stationary measures for the multi-type exclusion
process?

Yes! For any k ∈ N and ρ1 < . . . < ρk there exists a unique
stationary and translation invariant measure µk ,(ρ1,...,ρk ) such that
particles of class i ∈ {1, . . . , k} have density ρi . (Ferrari, Martin
05’)
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Is there a random object that couples all µk ,(ρ1,...,ρk ) on one
probability space?
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Is there a random object that couples all µk ,(ρ1,...,ρk ) on one
probability space?

Yes! the TASEP speed process U := {Ui}i∈Z ∈ [0,1]Z (Amir,
Angel, Valko 08’)
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Theorem:(Amir, Angel, Valko 08’) The unique stationary and
translation invariant measures of the TASEP dynamics can be
read off from the TASEP speed process.

v1

v2
µ2,( v1+1

2 ,
v2+1

2 )



Scaling the TASEP speed process
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We fix a speed v , and consider all the particles sitting within N2/3

away from the origin whose speed is of order v + O(N−1/3).

v
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We can turn the first particles in the configuration into an interface
by going up(down) upon seeing a particle(hole).

P
[
1

U≤v+µ1N−1/3 ]
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We can turn the first particles in the configuration P into an
interface by going up(down) upon seeing a particle(hole).

Add the second class particles and construct a new interface from
the new configuration

P
[
1

U≤v+µ1N−1/3 ]

P
[
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U≤v+µ2N−1/3 ]
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We can turn the first particles in the configuration into an interface
by going up(down) upon seeing a particle(hole).

Add the second class particles and construct a new interface from
the new configuration

Add the third class particles to construct...

P
[
1

U≤v+µ1N−1/3 ]

P
[
1

U≤v+µ2N−1/3 ]

P
[
1

U≤v+µ3N−1/3 ]
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We have obtained an ensemble of random walks that ’stick’ to one
another around the origin.
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Theorem (B., Sepäläinen, Sorensen 22’)
Let U be the TASEP speed process. Fix v ∈ (−1,1) and let

GN(x) := −N−1/3P
[
1U<v+µN−1/3 ](2N2/3x).

Then
GN N→∞−→ G,

where G is the stationary horizon, and the convergence is in
D(R,C(R)).

reflect→
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Happy birthday Timo!
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