RSK construction of the KPZ fixed point

Nikos Zygouras

based on joint work with
Elia Bisi, Yuchen Liao, Axel SAENZ

ANNALS OF MATHEMATICS

Order of current variance and diffusivity in the asymmetric simple exclusion process

By Márton Balázs and Timo Seppäläinen

SECOND SERIES, VOL. 171, NO. 2

March, 2010

ANMAAH

The core formula of KPZ fixed point (Matetski-Quastel-Remenik)

$$P\left(\{ Y_{\kappa_{i}}(t) > S_{i} \}_{i=1,\dots} \right) = \det \left(I - X_{s} K_{X_{s}} \right)_{\ell^{2}(\{4,-\gamma\eta\{\times 7\})}$$
with $X_{S_{i}}(\kappa_{i}, \times) := I_{X \geq S_{i}}$

$$K(m_{i} \times_{i} n_{i} \times') := -Q_{(m_{i}n_{i})} I_{m > \eta} + S_{[\alpha_{i}m_{i}],(\alpha_{i}k_{i})} S_{[\alpha_{i}n_{i}],(\alpha_{i}k_{i})}^{epi(\gamma)} (x_{i} \times')$$

$$S_{[\alpha_{i}n_{i}],(\alpha_{i}k_{i})}^{epi(\gamma)} (x_{i}, \gamma) := E_{X} \left[S_{[T+1,\eta],(\alpha_{i}k_{i})}^{epi(\gamma)} (X_{T_{i}}, \gamma) I_{T \geq \eta} \right]$$

$$\mathbb{P}\left(X_{i+1}=Y\mid X_{i}=x\right) \propto Q_{i}\left(x_{i}\gamma\right):=q_{i}^{\gamma-\chi}1_{\gamma,\zeta,\chi}$$

The details of TASEP

$$P_{\pm} \left(\begin{array}{c} 0 \\ \kappa \end{array} \right) = \frac{P_{\pm} 9_{\kappa}}{1 + P_{\pm} 9_{\kappa}}$$

$$\text{with} \quad 9_{\kappa} > 1 \quad 2 \quad P_{\pm} 9_{\kappa} < 1$$

Update rule: sequential from first to last particle

TASEP with inhomogeneous rates:

Hydrodynamics: Krug-Seppäläinen 199

Emrah 161

Emrah-Janjigian-Seppäläinen 121

Integrable: Johansson 100

Borodin-Pesche 108

2 many more

Robinson - Schensted - Knuth

row insertion, column insertion, dual-row, dual-column

$$\begin{cases} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1$$

Gelfand-Tsetlin

Probabilities

If
$$(Wij)_{i>1, j=1,..., K}$$
 independent $\in \{0,1\}$

$$P(Wij=1) = \frac{Pi\,?j}{1+Pi\,?j}$$

They
$$P(shP = shQ^T = \lambda) = \frac{1}{\prod (1+p;q_j)} S_{\lambda}(q) S_{\lambda^T}(p)$$

Schur functions & paths

$$= \det \left(\widehat{Q}_{1} \circ \widehat{Q}_{2} \circ \cdots \circ \widehat{Q}_{n} (-i, \lambda_{j} - j) \right)_{i,j \leq v}$$
with $\widehat{Q}_{i}(x, y) = q_{i}^{y-x} \perp_{y \gg x}$

Weights
$$R_i(i) = 1$$

$$R_i(i) = P_i$$

Intertwining & TASEP transition

TASEP
transition Kernel:
$$P(\gamma, \gamma')$$

intertwiner $\Lambda(\lambda, \gamma)$
 $\Lambda P = R \Lambda$
 $\Lambda P = R$

The path picture of intertwining

More appropriate path representation

Restricted determinantal process

$$\Psi_{4}(\lambda_{4}; \gamma_{4})$$
 $\Psi_{3}(\lambda_{3}; \gamma_{5})$ $\Psi_{2}(\lambda_{2}; \gamma_{2})$ $\Psi_{1}(\lambda_{1}; \gamma_{1})$

$$\lambda_{4} - 4 \qquad \lambda_{3} - 3 \qquad \lambda_{2} - 2 \qquad \lambda_{4} - 1$$

$$\gamma_{4}' - 4 \qquad \gamma_{2}' - 2 \qquad \gamma_{1}' - 1$$

with
$$\Psi_{i}^{m}(x) = wt$$

$$\frac{(t+j, \forall s-j)}{t}$$

$$\frac{(m_{i}x)}{t}$$

Total weight
$$\propto \prod_{K=1}^{N} \det \left(Q_{K}(x_{i-1}^{K-1}, x_{j}^{K})\right)_{ij \leq K} \cdot \det \left(\mathcal{Y}_{i}^{N}(x_{j}^{N})\right)_{i,j \leq N}$$

$$\left(\left(\mathbf{M}_{i}, \mathbf{X}_{i}, \mathbf{N}_{i}, \mathbf{Y}_{i} \right) \right) = - \left(\mathbf{Q}_{\left(\mathbf{M}_{i}, \mathbf{N}_{i} \right)} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) + \sum_{i=1}^{N} \left(\mathbf{Y}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \left($$

with $M_{ij} = wt \qquad \begin{cases} \psi_{i}(\cdot) \\ \psi_{i}(\cdot) \\ \psi_{i}(\cdot) \end{cases}$ $= \sum_{\gamma} Q_{i} \circ Q_{i+1} \circ \cdots \circ Q_{N} (\infty, \mathbb{Z}) \ \psi_{i}(\mathbb{Z})$

Key Observation: Mij is upper-triangular

$$M_{ij} = \sum_{\underline{z}} Q_{i} \circ \cdots \circ Q_{N} (\omega, \underline{z}) \cdot Q_{j}^{N}(\underline{z})$$

$$= \sum_{\underline{z}} Q_{i} \circ \cdots \circ Q_{N} (\omega, \underline{z}) \cdot R_{(r_{i}+\underline{j})} \circ Q_{N}^{-1} \circ \cdots \circ Q_{j+l}^{-1} (\underline{z}, \underline{y}_{j-\underline{j}})$$

$$= R_{(r_{i}+\underline{j})} \circ Q_{i} \circ \cdots \circ Q_{N} \circ Q_{N}^{-1} \circ \cdots Q_{j+l}^{-1} (\omega, \underline{y}_{j-\underline{j}})$$

$$\stackrel{\text{if } i > \underline{i}}{=} R_{(r_{i}+\underline{j})} \circ Q_{j+l}^{-1} \circ \cdots \circ Q_{i-1}^{-1} (\omega, \underline{y}_{j-\underline{j}})$$

$$\stackrel{\text{if } i > \underline{i}}{=} R_{(r_{i}+\underline{j})} \circ Q_{j+l}^{-1} \circ \cdots \circ Q_{i-1}^{-1} (\omega, \underline{y}_{j-\underline{j}})$$

The boundary value problem

$$h_{\kappa}^{\eta}(l+1,x) = h_{\kappa}^{\eta}(l,-) \circ Q_{\eta-\varrho}^{-1}(x)$$
 xeZ, $\ell z \kappa$

$$h_{\kappa}^{M}(\ell,\gamma_{N-\ell})=0$$

$$h_{K}^{N}(K,X) = q_{N-K}^{X-\gamma_{N-K}}$$

$$X \in \mathbb{Z}$$

$$\underline{\Phi}_{n-\kappa}^{\gamma}(x) = h_{\kappa}^{\gamma}(0,\cdot)o(R_{(r,t]})^{-1}(x)$$

It

Hiey

Thanks