RSK construction of the KPZ fixed point

Nikos Zygouras

based on joint work with
Elia Bisi, Yuchen Liao, Axel SAENZ

ANNALS OF MATHEMATICS

Order of current variance and diffusivity in the asymmetric simple exclusion process

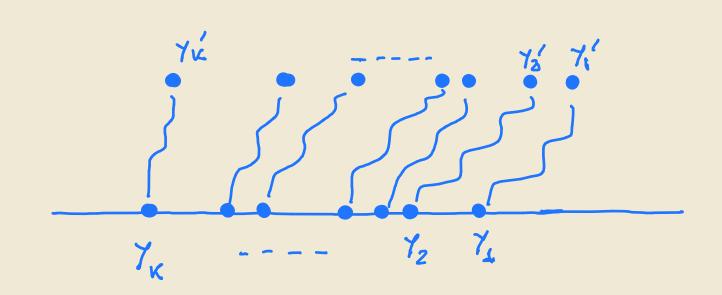
By Márton Balázs and Timo Seppäläinen

SECOND SERIES, VOL. 171, NO. 2

March, 2010

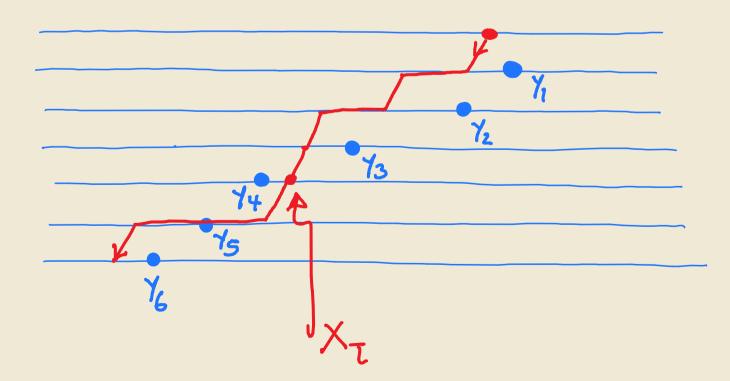
ANMAAH

The core formula of KPZ fixed point (Matetski-Quastel-Remenik)



$$\begin{split} \mathbb{P}\left(\left\{ Y_{\kappa_{i}}(t) \geqslant s_{i} \right\}_{i=1,\dots} \right) &= \det\left(\mathbb{I} - \chi_{s} \kappa_{\chi_{s}} \right)_{\ell^{2}\left(\left\{ d_{i} - \gamma n_{i} \right\} \times \mathbb{Z} \right)} \\ & \text{with } \chi_{s_{i}}\left(\kappa_{i}, \times \right) := \mathbb{I}_{\chi \geq s_{i}} \\ & \mathbb{K}\left(m_{i} \times_{i} n_{i} \times^{i} \right) := -\mathbb{Q}_{\left(m_{i} n_{i} \right]} \mathbb{I}_{m > n} + \mathbb{S}_{\left[c_{i} m_{i} \right], \left(c_{i} t_{i} \right]} \mathbb{S}_{\left[c_{i} n_{i} \right], \left(c_{i} t_{i} \right]}^{epi(\gamma)} \\ & \mathbb{S}_{\left[c_{i} n_{i} \right], \left(c_{i} t_{i} \right]}^{epi(\gamma)} \left(\chi_{\gamma} \right) := \mathbb{E}_{\chi} \left[\mathbb{S}_{\left[\tau_{i} + 1, n_{i} \right], \left(c_{i} t_{i} \right]}^{epi(\gamma)} \left(\chi_{\gamma} \right) \mathbb{I}_{\tau \leq n} \right] \end{split}$$

$$\mathbb{P}\left(X_{i+1}=Y\mid X_{i}=x\right) \propto Q_{i}\left(x_{i}\gamma\right):=q_{i}^{\gamma-\chi}1_{\gamma,\zeta,\chi}$$



The details of TASEP

$$P_{\pm} \left(\begin{array}{c} 0 \\ \kappa \end{array} \right) = \frac{P_{\pm} 9_{\kappa}}{1 + P_{\pm} 9_{\kappa}}$$

$$\text{with} \quad 9_{\kappa} > 1 \quad 2 \quad P_{\pm} 9_{\kappa} < 1$$

Update rule: sequential from first to last particle

TASEP with inhomogeneous rates:

Hydrodynamics: Krug-Seppäläinen 199

Emrah 161

Emrah-Janjigian-Seppäläinen 121

Integrable: Johansson 100

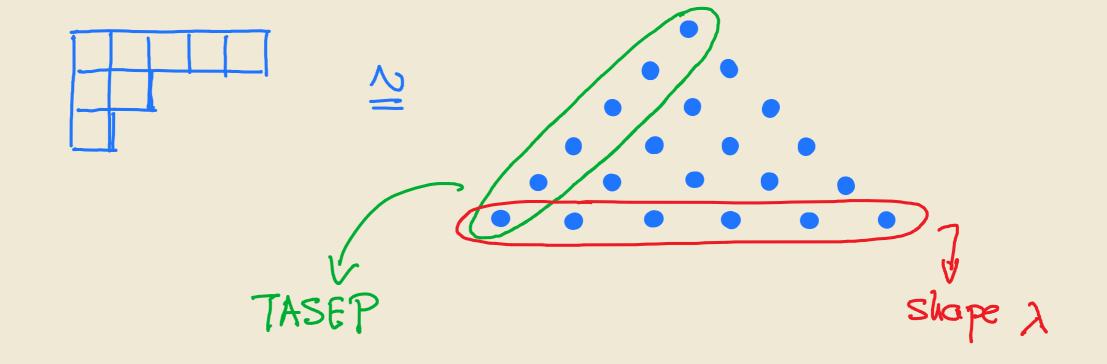
Borodin-Pesche 108

2 many more

Robinson - Schensted - Knuth

row insertion, column insertion, dual-row, dual-column

Gelfand-Tsetlin



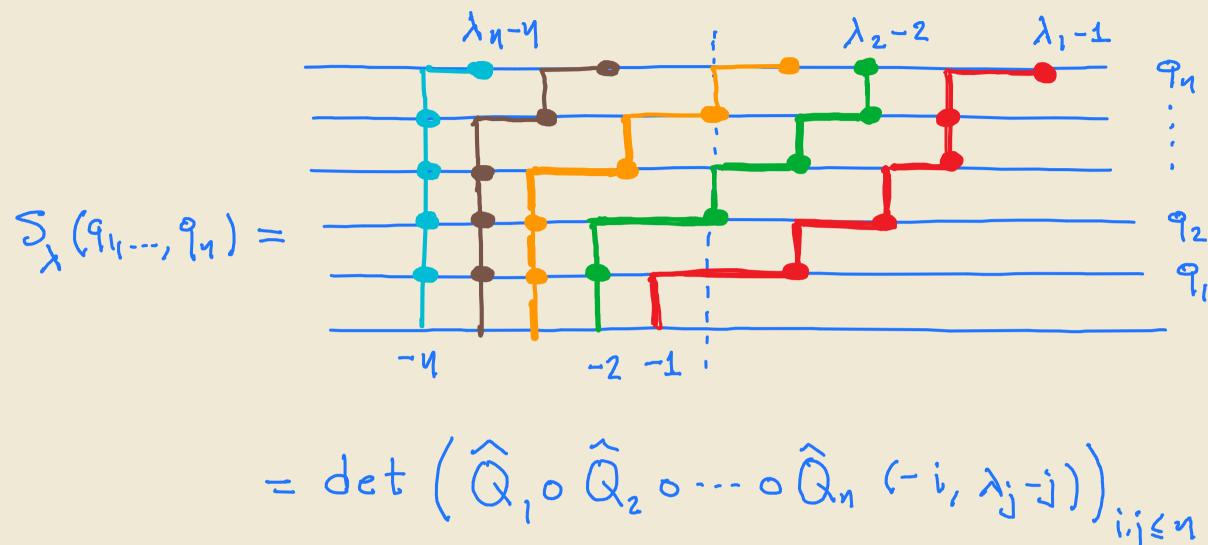
Probabilities

If
$$(Wij)_{i>1, j=1,..., K}$$
 independent $\in \{0,1\}$

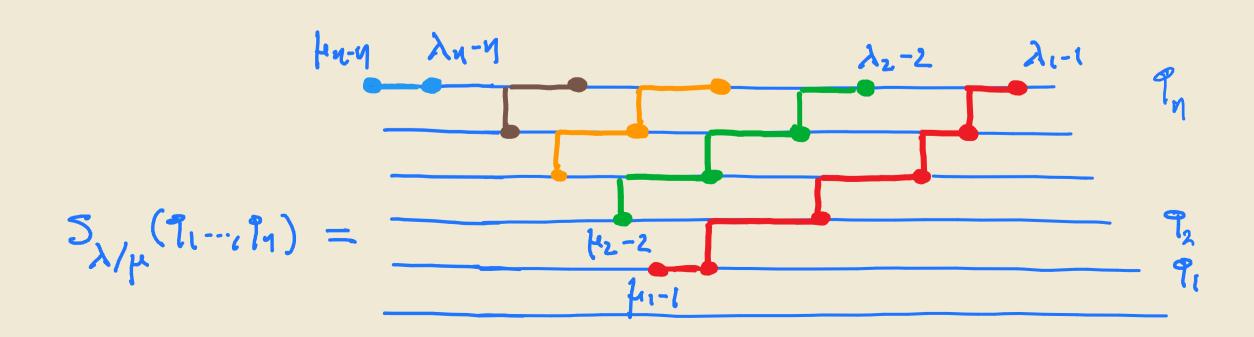
$$P(Wij=1) = \frac{Pi\,?j}{1+Pi\,?j}$$

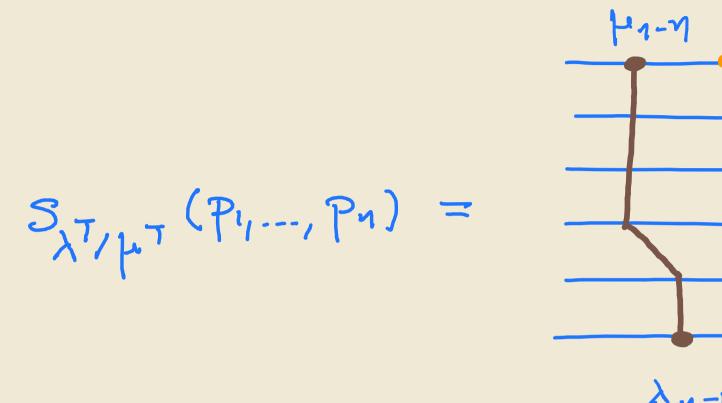
They
$$P(shP = shQ^T = \lambda) = \frac{1}{\prod (1+p_iq_j)} S_{\lambda}(q) S_{\lambda^T}(p)$$

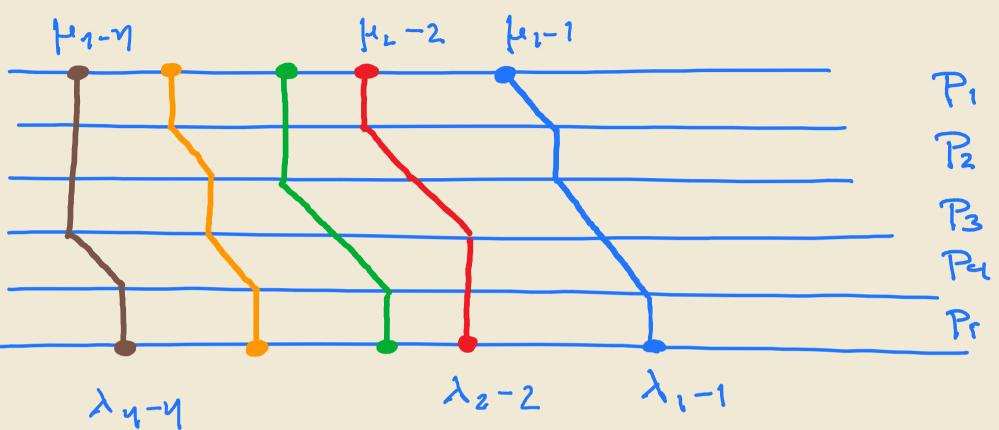
Schur functions & paths



$$= \det \left(Q_1 \circ Q_2 \circ \cdots \circ Q_n (-i, \lambda_j - j) \right)_{i,j \leq \nu}$$
with
$$\hat{Q}_i (x, y) = q_i^{y-x} 1_{y > x}$$







Weights
$$R_i(i) = 1$$

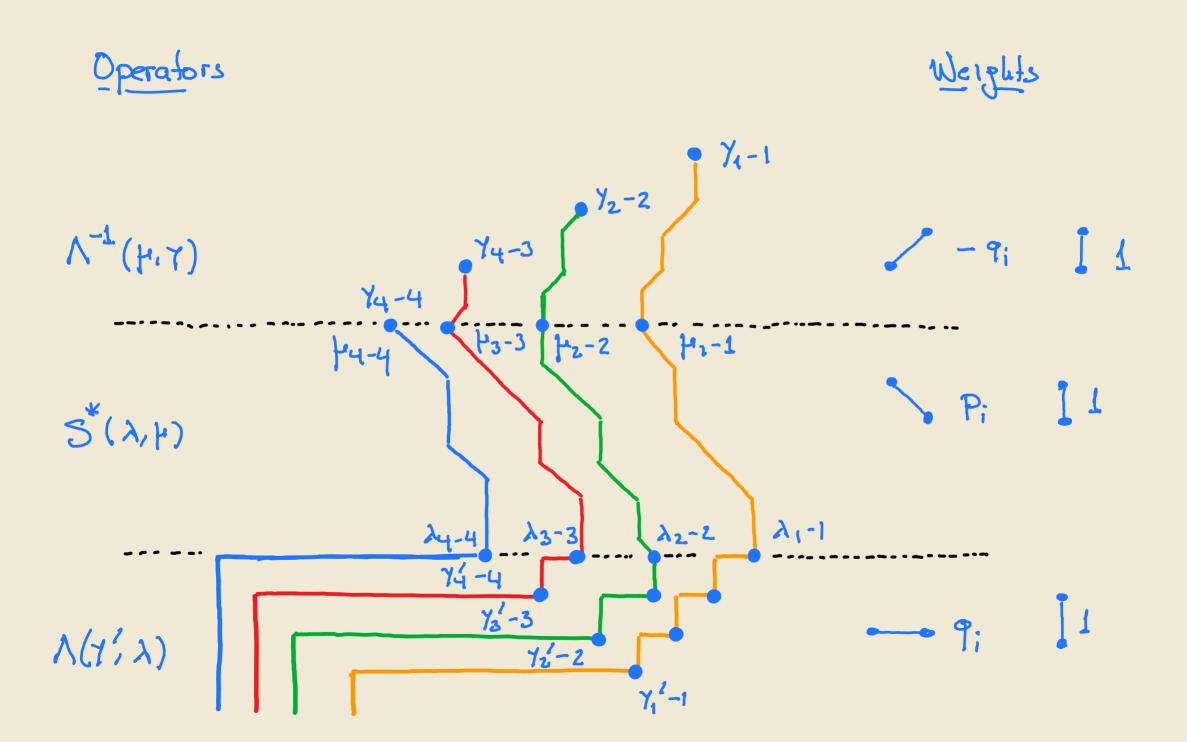
$$R_i(i) = P_i$$

Intertwining & TASEP transition

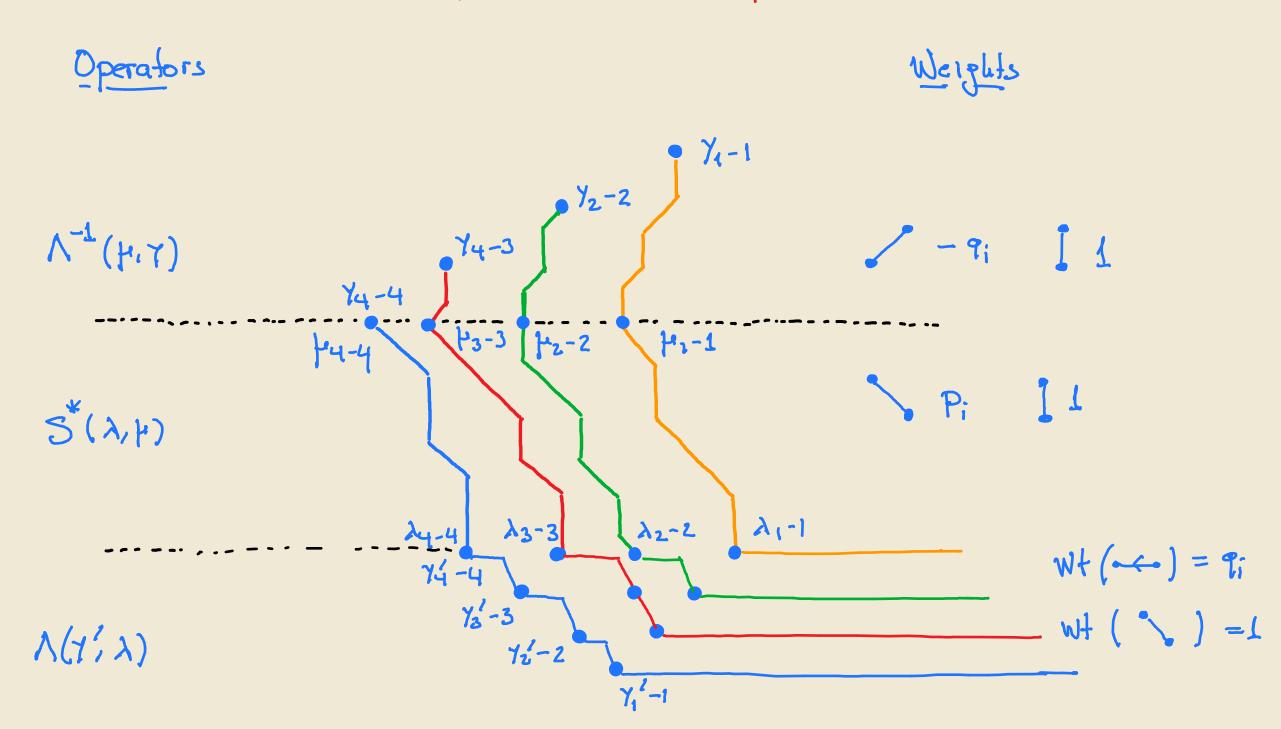
TASEP
transition Kernel:
$$P(\gamma, \gamma')$$

intertwiner $\Lambda(\lambda, \gamma)$
 $\Lambda P = S\Lambda$
 $\Lambda P = S\Lambda$
 $\Lambda = \Lambda^{-1} S\Lambda$
 $\Lambda : Nernel of Schur functions$
 $\Lambda = \Lambda^{-1} (\gamma, \mu)$
 $\Lambda = \Lambda^{-1} (\gamma, \mu)$

The path picture of intertwining



More appropriate path representation



Restricted determinantal process

$$\Psi_{4}(\lambda_{4}; \gamma_{4})$$
 $\Psi_{3}(\lambda_{3}; \gamma_{5})$ $\Psi_{2}(\lambda_{2}; \gamma_{2})$ $\Psi_{1}(\lambda_{1}; \gamma_{1})$

$$\lambda_{4}-4 \qquad \lambda_{3}-3 \qquad \lambda_{2}-2 \qquad \lambda_{1}-1$$

$$\gamma_{4}'-4 \qquad \gamma_{3}'-3 \qquad \gamma_{1}'-1$$

with
$$\Psi_{i}^{m}(x) = wt$$

$$\frac{(t+j, \forall s-j)}{t}$$

$$\frac{(m_{i}x)}{t}$$

Total weight
$$\propto \prod_{K=1}^{N} \det \left(Q_{K}(x_{i-1}^{K-1}, x_{j}^{K})\right)_{i j \leq K} \cdot \det \left(\mathcal{Y}_{i}^{N}(x_{j}^{N})\right)_{i,j \leq N}$$

$$\left(\left(\mathbf{M}_{i}, \mathbf{X}_{i}, \mathbf{N}_{i}, \mathbf{Y}_{i} \right) \right) = - \left(\mathbf{Q}_{\left(\mathbf{M}_{i}, \mathbf{N}_{i} \right)} \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \right) + \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i-1}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i-1}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i-1}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i-1}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i-1}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{X}_{i}^{i}, \mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+ \sum_{i=1}^{N} \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right) \left(\mathbf{Y}_{i}^{i}, \mathbf{Y}_{i} \right)$$

$$+$$

with $M_{ij} = wt \qquad \begin{cases} \psi_{i}(\cdot) \\ \psi_{i}(\cdot) \\ \psi_{i}(\cdot) \end{cases}$ $= \sum_{\gamma} Q_{i} \circ Q_{i+1} \circ \cdots \circ Q_{N} (m, Z) \psi_{i}^{N} (Z)$

Key Observation: Mij is upper-triangular

$$M_{ij} = \sum_{\mathbf{Z}} Q_{\mathbf{i}} \circ \cdots \circ Q_{\mathbf{N}} (\omega, \mathbf{Z}) \cdot Q_{\mathbf{j}}^{\mathbf{N}}(\mathbf{Z})$$

$$= \sum_{\mathbf{Z}} Q_{\mathbf{i}} \circ \cdots \circ Q_{\mathbf{N}} (\omega, \mathbf{Z}) \cdot R_{(\mathbf{r}_{i}+\mathbf{j})} \circ Q_{\mathbf{N}}^{-1} \circ \cdots \circ Q_{\mathbf{j}+\mathbf{i}}^{-1} (\mathbf{Z}_{i}, \mathbf{Y}_{j}-\mathbf{j})$$

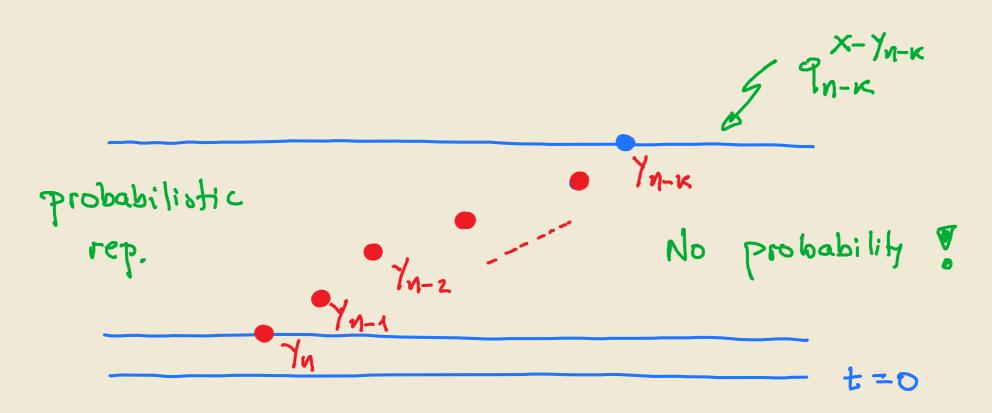
$$= R_{(\mathbf{r}_{i}+\mathbf{j})} \circ Q_{\mathbf{i}} \circ \cdots \circ Q_{\mathbf{N}} \circ Q_{\mathbf{N}}^{-1} \circ \cdots \circ Q_{\mathbf{j}+\mathbf{i}}^{-1} (\omega, \mathbf{Y}_{j}-\mathbf{j})$$

$$\stackrel{\text{if } \mathbf{i} > \mathbf{j}}{=} R_{(\mathbf{r}_{i}+\mathbf{j})} \circ Q_{\mathbf{j}+\mathbf{i}}^{-1} \circ \cdots \circ Q_{\mathbf{j}+\mathbf{i}}^{-1} (\omega, \mathbf{Y}_{j}-\mathbf{j})$$

$$\uparrow \mathbf{i} = \mathbf{j} = \mathbf{j} \cdot \mathbf{j} \cdot \mathbf{j} \cdot \mathbf{j} \cdot \mathbf{j}$$

$$\uparrow \mathbf{j} = \mathbf{j} \cdot \mathbf{j}$$

The boundary value problem



$$h_{\kappa}^{\eta}(l+1,x) = h_{\kappa}^{\eta}(l,-) \circ Q_{\eta-\varrho}^{-1}(x)$$
 xeZ, $\ell z \kappa$

$$h_{\kappa}^{\eta}(\ell,\gamma_{\eta-\ell})=0$$

$$h_{K}^{N}(K,X) = q_{N-K}^{X-\gamma_{N-K}}$$

$$X \in \mathbb{Z}$$

$$\overline{\Phi}_{N-\kappa}^{\eta}(x) = h_{\kappa}^{\eta}(0,\cdot)o(R(r,t])^{-1}(x)$$

It

Hiey

Thanks