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The directed landscape and continuum directed random polymer

• Directed landscape L : R4 → R is a random continuous
function expected to be a universal KPZ scaling limit.

• It is a last passage percolation problem: continuous paths
γ : [s, t]→ R are given a random weight w(γ), and

L(x, s; y, t) = sup
γ:[s,t]→R

γ(s)=x,γ(t)=y

w(γ).

The geodesic is the path achieving the maximum

• L(0, 0; ·, 1) is the weight profile of the geodesic. (0, 0)

(0, 1)
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The directed landscape and continuum directed random polymer

• Positive temperature analogue: continuum directed
random polymer (CDRP).

• White noise environment ξ on R× R, continuous paths
γ : [s, t]→ R have a weight w(γ),

w(γ) =
∫ t

s
ξ(z, γ(z)) dz.

• Polymer measure defined via partition function Zβ :

Z(x, s; y, t) = Ex,s,y,t[exp(w(γ))].

Z is a function of ξ; Ex,s,y,t is over γ only and distributes it as
a Brownian bridge from (x, s) to (y, t).

• h(0, 0; ·, 1) = log Z(0, 0; ·, 1) is the free energy profile.

(0, 0)

(0, 1)
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The directed landscape and continuum directed random polymer

• For both the DL and the CDRP, the location of the geodesic Γ or marginal of
the polymer measure µ at a height s are given by convolution formulas:

Γ(s) = argmax
x∈R

L(0, 0; x, s) + L(x, s; 0, 1)

µ(Γ(s) = x) = exp(h(0, 0; x, s) + h(x, s; 0, 1))∫
R exp(h(0, 0; y, s) + h(y, s; 0, 1)) dy

.

• Much structure of the path measures can be understood via the profile
processes L and h.
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The KPZ equation

• The free energy profile h solves the KPZ equation, given by

∂th = 1
4 (∂xh)

2 + 1
4∂

2
xh + ξ,

where ξ is space-time white noise on R× (0,∞) and h : R× (0,∞)→ R.

• We will use the Cole-Hopf notion of solution to the KPZ equation, i.e., h is
defined via log Z where Z solves the multiplicative SHE:

∂tZ(y, t | x, s) =
1
4∂

2
yZ(y, t | x, s) + ξ(y, t)Z(y, t | x, s)

Z(y, s | x, s) = δ0(x – y) for all s > 0

• Introduced by Alberts-Khanin-Quastel, regularity recently studied by
Alberts–Janjigian–Rassoul-Agha–Seppäläinen.
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Upper tail large deviations of h and L

The upper tails and upper large deviations of these two processes have
been studied for quite some time, eg.

• One-point large deviations/upper tails for L were known from work of
Tracy-Widom, see also Rider-Ramirez-Virág.

• Seppäläinen and Johansson studied one-point large deviations of
prelimiting zero temp. models (TASEP and geometric LPP resp.)

• Quastel-Tsai studied profile large deviations of TASEP.

• Corwin-Ghosal, Ganguly-H., Tsai-Lin studied upper tails of h.

• Prelimiting models for h: ASEP by Das-Zhu and Damron-Petrov-Sivakoff.

• and more...
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The random path under the upper tail conditioning

Interested in the behaviour of the geodesic or polymer
measure when L(0, 0; 0, 1) or h(0, 0; 0, 1) is large, say > θ.

An energy-entropy tradeoff occurs: larger fluctuations give
the geodesic more choice of paths, but the cost grows with θ.

So the path measure will become more rigid, i.e., have much
smaller transversal fluctuations. (It also becomes a
“highway” for geodesics to nearby points.)

(0, 0)

(0, 1)
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The scaling limit of the geodesic under upper tail conditioning

Let Γθ : [0, 1]→ R be the geodesic in the directed landscape from (0, 0) to
(0, 1), conditioned on L(0, 0; 0, 1) > θ.

Theorem (Ganguly-H.-Zhang)

θ–1/4Γθ
d→ 1

2B in the uniform topology with B = standard Brownian bridge.

Note that we identify the fluctuation scale to be θ–1/4 as well as the scaling
limit.

This result had been conjectured by Zhipeng Liu, who proved the one-point
scale and one-point convergence using exact formulas.

A similar result had earlier been conjectured by Basu-Ganguly for the
geodesic in exponential LPP under a large deviation conditioning.
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The scaling limit of the CDRP polymer measure under upper tail conditioning

Let Γannθ : [0, 1]→ R be a sample from the annealed polymer measure from
(0, 0) to (0, 1) in the CDRP, under the conditioning that h(0, 0; 0, 1) > θ.

Theorem (Ganguly-H.-Zhang)

θ–1/4Γannθ
d→ 1

2B in the uniform topology with B = standard Brownian bridge.

Liu’s methods did not apply to positive temperature, and so one-point
convergence was also not previously known.

What about the quenched situation? The polymer measure concentrates in
a O(θ–1/2) window around a random “backbone” Γbackθ , and θ–1/4Γbackθ

d→ 1
2B.
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A crucial ingredient: an upper tail limit shape

What does h look like when h(0) = h(0, 0; 0, 1) > θ?

Define Triangleθ : [–θ1/2, θ1/2] to be

(0, θ)

(θ1/2, –θ)(–θ1/2, –θ)

The linear portions of Triangleθ are tangent to –x2 at ±θ1/2.

Theorem (Ganguly-H.)
There exist θ0 and c > 0 such that, for all t ≥ 1, θ > θ0, and M > 0,

P

(
sup

x∈[–θ1/2 ,θ1/2]
|h(x) – Triangleθ(x)| > Mθ

1/4
∣∣∣ h(0) = θ) ≤ exp(–cM2).
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A second crucial ingredient: an upper tail comparison

From the limit shape, one can obtain sharp asymptotics for the upper tail:

Theorem (Ganguly-H.)
There exist C <∞ and θ0 such that, for all θ > θ0,

exp
(
–43 θ

3/2 – Cθ3/4
)

≤ 1
dθP

(
h(0) ∈ dθ

)
≤ exp

(
–43 θ

3/2 + Cθ3/4
)
.

As an immediate consequence, the same bounds also hold for P(h(0) > θ).

By more refined coupling arguments, we also get a comparison statement:

Theorem (Ganguly-H.-Zhang)
There exist C <∞ and θ0 such that, for all δ > 0 and θ > θ0,

P
(
h(0) ≥ θ + δ

)
P
(
h(0) ≥ θ

) = exp
(
–2δθ1/2 + O(δ)

)
.
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Heuristics and proof ideas



The source of the θ–1/4 scale

Why is the fluctuation scale θ–1/4?

• x 7→ h(0, 0; x, 1) + x2 and x 7→ L(0, 0; x, 1) + x2 are stationary.

• So the geodesic/polymer fluctuating by ε means it suffers a loss of O(ε2).

• Under the conditioning of being > θ, this loss has to be made up; akin to
h(0, 0; 0, 1) > θ + O(ε2) (by stationarity).

• But P(h(0, 0; 0, 1) > θ + O(ε
2))

P(h(0, 0; 0, 1) > θ)
≈ exp(–Cε2θ1/2).

• This is O(1) exactly when ε = O(θ–1/4).
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The source of the Brownian bridge

Why is the scaling limit a Brownian bridge?

• Essentially,

P
(
Γθ(s) = x | L(0, 0; 0, 1) > θ

)

≈
P
(
L(0, 0; x, s) ≈ sθ,L(x, s; 0, 1) ≈ (1 – s)θ

)
P
(
L(0, 0; 0, 1) > θ

)
≈

P
(
L(0, 0; 0, s) ≈ sθ + s–1x2,L(0, s; 0, 1) ≈ (1 – s)θ + (1 – s)–1x2

)
P
(
L(0, 0; 0, s) ≈ sθ,L(0, s; 0, 1) ≈ (1 – s)θ

) .

• Scale x 7→ xθ–1/4. By the comparison theorem, this ratio is

exp
(
–2θ1/2(xθ–1/4)2[s–1 + (1 – s)–1]

)
= exp

(
– x2

2× 1
4s(1 – s)

)
,

i.e., the exponent of the density of 12B(s) = N(0,
1
4s(1 – s)).
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The source of the Brownian bridge

• One-point Gaussianity follows essentially from the comparison theorem.
For multi-point, also need some decoupling & independence.

• These are provided by coalescence.

• (Γ(s), Γ(t)) = argmax
z1 ,z2

L(0, 0; z1, s) +L(z1, s; z2, t) +L(z2, t; 0, 1)

• Coalescence gives quadrangle equality:
L(x1 → y1) + L(x2 → y2) = L(x1 → y2) + L(x2 → y1)

• So the double argmax decouples.

• Coalescence also guarantees the two argmaxes occur in
disjoint time strips, so independent.

x1 x2

y1 y2

13



The source of the Brownian bridge

• One-point Gaussianity follows essentially from the comparison theorem.
For multi-point, also need some decoupling & independence.

• These are provided by coalescence.

• (Γ(s), Γ(t)) = argmax
z1 ,z2

L(0, 0; z1, s) +L(z1, s; z2, t) +L(z2, t; 0, 1)

• Coalescence gives quadrangle equality:
L(x1 → y1) + L(x2 → y2) = L(x1 → y2) + L(x2 → y1)

• So the double argmax decouples.

• Coalescence also guarantees the two argmaxes occur in
disjoint time strips, so independent.

x1 x2

y1 y2

13



The source of the Brownian bridge

• One-point Gaussianity follows essentially from the comparison theorem.
For multi-point, also need some decoupling & independence.

• These are provided by coalescence.

• (Γ(s), Γ(t)) = argmax
z1 ,z2

L(0, 0; z1, s) +L(z1, s; z2, t) +L(z2, t; 0, 1)

• Coalescence gives quadrangle equality:
L(x1 → y1) + L(x2 → y2) = L(x1 → y2) + L(x2 → y1)

• So the double argmax decouples.

• Coalescence also guarantees the two argmaxes occur in
disjoint time strips, so independent.

x1 x2

y1 y2

13



The source of the Brownian bridge

• One-point Gaussianity follows essentially from the comparison theorem.
For multi-point, also need some decoupling & independence.

• These are provided by coalescence.

• (Γ(s), Γ(t)) = argmax
z1 ,z2

L(0, 0; z1, s) +L(z1, s; z2, t) +L(z2, t; 0, 1)

• Coalescence gives quadrangle equality:
L(x1 → y1) + L(x2 → y2) = L(x1 → y2) + L(x2 → y1)

• So the double argmax decouples.

• Coalescence also guarantees the two argmaxes occur in
disjoint time strips, so independent.

x1 x2

y1 y2

13



The source of θ–1/2 window around backbone

Why does the polymer measure concentrate in a θ–1/2 window around Γbackθ ?

• Recall that when h(0, 0; 0, 1) > θ, the profile has slope approximately –2θ1/2.

• So at distance O(θ–1/2), the loss in free energy is O(1); all such locations are
therefore competitive for the polymer measure.

• Different scale in zero temp: the argmax location will be on scale θ–1, as
then the slope loss and Brownian fluctuations are of the same order, θ–1/2.

(0, θ)

(θ1/2, –θ)(–θ1/2, –θ)

slope ≈ –2θ1/2
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Summary

• Using geometric methods + Brownian Gibbs properties, we can obtain the
shape of the weight and free energy profiles under upper tail events.

• These also give sharp upper tail asymptotics and probability comparison
statements.

• With these + “tent” picture, can prove that geodesic/polymer measure
rescaled by θ–1/4 converges to a Brownian bridge, under upper tail.

• Further, the polymer measure fluctuates on scale θ–1/2 around a random
“backbone” curve.

Happy birthday Timo!
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The Brownian Gibbs property



The resampling property

Both h(0, 0; ·, 1) and L(0, 0; ·, 1) can be embedded as the top/lowest-indexed
curve in a N-indexed ensemble of random continuous curves.

...
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The resampling property

Both h(0, 0; ·, 1) and L(0, 0; ·, 1) can be embedded as the top/lowest-indexed
curve in a N-indexed ensemble of random continuous curves.

...
A useful heuristic to keep in mind:

h and L are like Brownian bridges conditioned to stay above a parabola –x2

with which they share endpoints.
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A convex consequence

A key idea is that the resampling in terms of Brownian bridges implies that
the limit shapes should be convex.

Indeed, suppose the limit shape of the top curve is not convex in some
neighbourhood. This pushes the second curve down on the interval.

Then resample the top curve on that interval. Since the non-convexity
means the second curve is far away, Brownian bridge naturally avoids it.

Unconditioned Brownian bridge approximately follows a straight line, so
can’t recreate the earlier non-convexity. A contradiction!
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