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One-point upper-tail LDPs for models in the KPZ class

e Longest increasing subsequence: Deuschel, Seppalainen, Zeitouni, ...
e Last passage percolation: Ciech, Georgiou, Janjigian, Johansson, ...
e Directed polymers: Georgiou, Janjigian, Seppéléinen, ...

e Corner growth models: Emrah, Janjigian,...

e Random matrices and random operators: Baik, Buckingham, DiFranco,
Deift, Dumaz, Its, Krasovsky, Ramirez, Rider, Virag, Tracy, Widom, ...

e ASEP height function: Damron, Das, Petrov, Sivakoff, Zhu, ...
e Tagged particle in ASEP: Sethuraman, Varadhan,. ..

o KPZ equation: more on this later
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KPZ and SHE

Kardar-Parisi—-Zhang (KPZ) Stochastic Heat Equation (SHE)
Oth = $0xch + 5(0ch)? + 1) OZ=30uZ+nZ

1 =spacetime white noise Feynman-Kac:
Z(T,x) =

Egy [efoT ds n(T=s.X() 7 (0, X(T))]
i
directed
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hL
X
X

=27
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SHE moments < attractive BPs

kisoookn €Zso  ki=ki+...4+ky  Z(0,-) = do

n
E [ [z, xc)k‘] (Feynman-Kac + Tanaka + Girsanov)
c=1
n X1 X2 X3 X4 X5
_ eﬁT(k3_k)+% Zc,c/:1 keker [Xe—X 1] k=3 k=2 ky=1 k=1 ks=2

X E.pp [ﬁ 50(Xi(T))}
i=1

attractive Brownian Particles (BPs)
k

1
dXi(s) = > Ssen(X; — Xi)ds + dBy(s)
j=1

y 3

A special case of rank-based diffusions: Banner, Banerjee, Budhiraja, Cabezas, Dembo,

Fernholz, Ichiba, Jara, Karatzas, Olla, Pal, Pitman, Papathanakos, Sarantsev, Shkolnikov,
Sidoravicius, Tsai, Varadhan, Zeitouni, ...
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Particle numbers. k. = Nm;; m. € (0,00); N — o0 (1)
Time. Take any T = Ty with N°T = N>Ty — oo (2).
Allow T — 0, T — 1, T — oo as long as (1)—(2) hold.

Space. XV(s) := +-X;(T5)

(moments) E{ [z, NTxc)Nm‘]
- ]2 1
BPs) dx = > “sgn(X) — X")ds + ———dB
(a S) i N zsgn( j i ) s+ m (S)

J=1

(1) Nm¢ € Zso & m € £Z50
(2) Drift dominates diffusive effect. Particles tend to cluster.
(Space) The scaling NT" makes the total drift of order 1.
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LDP for the attractive BPs

Theorem (T 23)

1 Nm
HN(S) = ]T] Zéxﬁ'(s)v By € Cg([()’ 1]’ m'@(R))
i=1

As N — oo, the empirical measure p,, satisfies an LDP on
€ ([0,1],mP(R)) with speed N*T and an explicit rate function 1.

e Under the diffusive scaling, N — co and N2T fixed,
[Dembo-Shkolnikov—Varadhan—Zeitouni 16] proved the LDP for a gen-
eral class of rank-based diffusions.

e The behavior under N>T — oo (considered here) is very different from
that under the diffusion scaling (considered in [DSVZ 12]).
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LDP for the attractive BPs

Theorem (T 23)

wy satisfies an LDP with speed N>T and an explicit rate function 1.

Corollary

Under Z(0, +) = 6o, E[[]i_, Z(T,NTx.)"™] ~ exp(N°T - Ly (1))

X1 X2 X3 X4 X5
my my mg my ms =
A LSHE(m) = LSHE(mh e amn)
n
e m 1
Mot bmy @ ':2_+ EmcmC’|Xc_XC’|_H*
L J c,c/=1

I, := inf {]I(u) :u € €(0,1,mP(R)), 1(0) = Y medy,, (1) = méo}
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LDP for the attractive BPs

Theorem (T 23)

wy satisfies an LDP with speed N>T and an explicit rate function 1.

Corollary

Under Z(0, +) = 6o, E[[]i_, Z(T,NTx.)"™] ~ exp(N°T - Ly (1))

X1 X2 X3 X4 X5

LSHE(n—i) LSHE(mla e amn)

w3
= + Z m My X — X | — I,

Lotmy T 24

cc_l

I, := inf{]l( ) e €(0,1],mP(R ch e, (1 méo}

Theorem (T 23)

Unique minimizer of the infimum: & = 37" _, m.J¢_, the optimal deviation.
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Optimal deviation

Optimal clusters £, . . ., £, and optimal deviation £

o £.(s) = £(s) =2t mede (5)
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Optimal deviation

Nm
1 1 1
N __ N N
Xm ]T]J:Zlisgn()(] _Xt )ds—i-ﬁdB,(s)

Inertia clusters, ¢;,.... (.
e (. has mass m..
Optimal clusters £, . . ., £, and optimal deviation £
o £.(s) = &(s) = Doemy mede ()
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Optimal deviation

Nm
1
dxY = =" ~sgn(XY — X)) ds+———dB;(s)
N2 VAT
X1 X2 X3 X4 X5
Inertia clusters, ¢;,.... (.
e (. has mass m..
o Start with velocity (—3mi —%;n;
(coo—dmey + dmepy +.00). M+ 55

Optimal clusters £, . . ., £, and optimal deviation £

o £.(s) = £(s) =2t mede (5)
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Optimal deviation

Nm
1
N __ N N
dx; ITJj_ZIESgn(Xj - X; )ds—i—\/idB,(s)

Inertia clusters, ¢;,.... (.

e (. has mass m..

e Start with velocity

(. . %mc_l —+ %mH_I =+ .. )

e Merge according to conservation
of momentum.

Optimal clusters £, . . ., £, and optimal deviation &

o £.(s):= &(s) =2t mede (5)
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Optimal deviation

Nm
1 1 1
dxV = — % —sen(X¥ — XxM)ds+——dB,
i NJ:lesgn( i 1) s+m (S)

Inertia clusters, ¢;,.... (.

e (. has mass m,.

e Start with velocity

(. . %mc_l —+ %mH_I =+ .. )

e Merge according to conservation
of momentum.

Branches, b: ¢,¢’ € bifand only if (1) = ¢ (1)
Optimal clusters £, . . ., £, and optimal deviation &

o £.(s):= &(s) =2t mede (5)
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Optimal deviation

Inertia clusters, ¢;,.... (.
e (. has mass m,.

e Start with velocity
(. . %mc_l —+ %mﬂ_l =+ .. )

e Merge according to conservation
of momentum.

Branches, b: ¢,¢’ € bifand only if (1) = ¢ (1)
Optimal clusters £, . . ., £, and optimal deviation &

o £(s):=Cc(s) + (=Co(1))s, ccb £(s) = Xemi mee, ()
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So far and what’s next
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Moments of SHE — LDP for KPZ

Proposition (T 23)

Let Zeonc = {¥ : f, ¥ > p, f, i is concave}. The functions
Lgye(m) : [0,00)" — [0, 00) Ixer(F) : Roone — [0, 00)

are strictly convex and the Legendre transform of each other.

(Xf7r3) f,#(z)
e 2);* S (xa,T) k’\
’ s ’ e X5, T /// -
(X171‘1). (z) = —Z (x5, 520

Ly (F) = L (Y1, 1 fR 8 e 7) r - %(&cp)z)

Gibbs line ensembles [Corwin Hammond 14, 16] and [Ganguly—Hegde
22]. Our approach goes through moments and is different.
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n-point, upper-tail LDP for the KPZ equation

hN(t7x> = ﬁ(h(Tt,NTx) + log\/T+ %)

Corollary (T 23 & Lin—T 23)

Under delta initial condition Z(0, «) = &y, for any ¥ € %,

conc’

Plliy(1,x;) —r| < d,c=1,...,n] = e~ N'T oz (F)
N — oo and N*T = N*Ty — oo first; § — 0 later.
Covered scaling regimes
e Short or unit-ordertime 7" — O or T — 1: any deviation > 1
e Longtime T — oco: any deviation > T

Doesn't cover the hyperbolic scaling regime, N = 1 and T — oo,
hr(t,x) == L (h(Tt,Tx) + log VT + L).
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Related results

First, when n = 1 and x; = 0, we recover I, (r) = ‘%513/2_
One point, upper-tail LDPs
e Hyperbolic scaling regime

P[L(h(T,0) +log VT + L) =] ~e

o Predicted in [Le Doussal-Majumdar—Schehr 16]; proven in [Das-T 21].

_T42,3/2
e T — oco,r>0

e Other scaling regimes and/or other initial conditions

o Physics: Asida, Hartman, Janas, Kolokolov, Korshunov, Katzav,
Krajenbrink, Le Doussal, Majumdar, Livhe, Meerson, Prolhac, Rosso,
Sasorov, Schmidt, Smith, Vilenkin, ...

o Math rigorous: Corwin, Das, Gaudreau Lamarre, Ghosal, Lin, Tsai, ...

n-point upper tails and terminal-time limit shape
e [Ganguly—Hegde 22]
o Detailed and optimal n-point bounds that hold for all # > .

o When specialized onto the hyperbolic scaling regime: the n-point LDP
and the terminal-time limit shape f, .
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So far and what’s next

; (X37I'3)
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Spacetime limit shape

Ens(F) :i={|hn(1,X;) — x| < b, c=1,...,n}

Theorem (Lin—T 23)

Under Z(0, +) = d, for any ¥ € %g,,, and R < oo,
P([liy —Nell oo 4, xi—rop) < & | Ens(F)] — 1

N — oo and N*T = N*Ty — o first: 6 — 0 later.
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Hydrodynamic limit (without conditioning)

e [Janjigian—Rassoul-Agha—Seppéléinen 22] The hydrodynamic limit hg is
the entropy solution of d;hy = %(8xh0)2.
o [Amir-Corwin—Quastel 11] Here ho(t,x) = p(t,x) := —x?/(2t).
bt/

e Analogous to the hydrodynamic limits for the TASEP and ASEP
[Rost 81], [Rezakhanlou 91], [Seppalainen 98]

Limit shape (with conditioning)
e h,(t,x) also solves d;h, = 1(8:h.)?, butis a non-entropy solution.
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Limit shape (with conditioning)

e h,(t,x) also solves 8,h* =1(0 h* , but is a non-entropy solution.

e How to describe h,?
h,(1 — s, x) is the entropy solution of the backward equation
—osh, = 1(0:h,)%
Consistent with [Jensen—Varadhan 00, 04]
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Mechanism of the deviations, noise-corridor effect

TN — Z(T NTx) = By, [efor ds n(T=5X()) §0(X(T))]

Consider n = 1 and x; = 0.

A known phenomenon. [Seppaldinen 98], [Deuschel-Zeitouni 99]

The noise 7 makes itself anomalously large only around [0, 1] x {0}. We
call this the noise-corridor effect.

(t,2) = (0,0) 7 (t,2) = (0.0)
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Mechanism of the deviations, noise-corridor effect

When n > 1, a similar noise-corridor effect occurs, with the
noise-corridors being the shocks.
\ | [t V4
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Mechanism of the deviations, noise-corridor effect

When n > 1, a similar noise-corridor effect occurs, with the
noise-corridors being the shocks.

Proposition (T 23)

(Noise corridors in KPZ := shocks) = (optimal clusters in attractive BPs)
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Summary and open problems

We utilize moments and a tree structure to obtain the spacetime limit
shape. A crucial idea is to utilize the noise-corridor effect.

Conjecture. The same results should hold in the hyperbolic scaling
regime (hr(t,x) := +(h(Tt, Tx) + log VT + L), T — o0) and for F € %
(all upper-tail deviations). The limit shape h, is still defined as the
backward entropy solution, though the shocks are no longer piecewise
linear when ¥ ¢ Zconc.

More general initial conditions. One may seek to use the convolution
formula as in [Corwin—Ghosal 20] and [Ghosal-Lin 23].

Possibility of symmetry breaking. Predicted in the weak-noise
regime [Janas—Kamenev—-Meerson 16], [Smith—Kamenev-Baruch
Meerson 18], [Krajenbrink—Le Doussal 17, 19]; should hold here too.

Conjecture. Symmetry breaking under the two-delta initial condition
Z(0,+) = d_nr + 04nr. Very preliminary calculations in [Appendix B,
Lin—T 23].
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