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One-point upper-tail LDPs for models in the KPZ class

• Longest increasing subsequence: Deuschel, Seppäläinen, Zeitouni, . . .

• Last passage percolation: Ciech, Georgiou, Janjigian, Johansson, . . .

• Directed polymers: Georgiou, Janjigian, Seppäläinen, . . .

• Corner growth models: Emrah, Janjigian,. . .

• Random matrices and random operators: Baik, Buckingham, DiFranco,
Deift, Dumaz, Its, Krasovsky, Ramirez, Rider, Viràg, Tracy, Widom, . . .

• ASEP height function: Damron, Das, Petrov, Sivakoff, Zhu, . . .

• Tagged particle in ASEP: Sethuraman, Varadhan,. . .

• KPZ equation: more on this later
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KPZ and SHE

Kardar–Parisi–Zhang (KPZ)

∂th = 1
2∂xxh + 1

2(∂xh)2 + η

η =spacetime white noise

Stochastic Heat Equation (SHE)

∂tZ = 1
2∂xxZ + η Z

Feynman–Kac:
Z(T, x) =

EBM

[
e
∫ T

0 ds η(T−s,X(s))Z(0,X(T))
]

directed
polymer
in a random 
environment

eh = Z
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SHE moments ⇔ attractive BPs

k1, . . . , kn ∈ Z>0 k := k1 + . . .+ kn Z(0, ·) = δ0

E
[ n∏
c=1

Z(T, xc)kc
]

(Feynman–Kac + Tanaka + Girsanov)

= e
1
24 T(k3−k)+ 1

2
∑n

c,c′=1 kckc′ |xc−xc′ |

× EaBP

[ k∏
i=1

δ0(Xi(T))
]

attractive Brownian Particles (BPs)

dXi(s) =
k∑

j=1

1
2

sgn(Xj − Xi)ds + dBi(s)

A special case of rank-based diffusions: Banner, Banerjee, Budhiraja, Cabezas, Dembo,
Fernholz, Ichiba, Jara, Karatzas, Olla, Pal, Pitman, Papathanakos, Sarantsev, Shkolnikov,
Sidoravicius, Tsai, Varadhan, Zeitouni, . . .
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Scaling

Particle numbers. kc = Nmc; mc ∈ (0,∞); N → ∞ (1)

Time. Take any T = TN with N2T = N2TN → ∞ (2).
Allow T → 0, T → 1, T → ∞ as long as (1)–(2) hold.

Space. XN
i (s) :=

1
NT Xi(Ts)

(moments) E
[ n∏
c=1

Z(T,NTxc)Nmc

]
(aBPs) dXN

i =
1
N

Nm∑
j=1

1
2

sgn(XN
j − XN

i ) ds +
1√
N2T

dBi(s)

(1) Nmc ∈ Z>0 ⇔ mc ∈ 1
NZ>0

(2) Drift dominates diffusive effect. Particles tend to cluster.
(Space) The scaling NT makes the total drift of order 1.
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LDP for the attractive BPs

Theorem (T 23)

µN(s) :=
1
N

Nm∑
i=1

δXN
i (s), µN ∈ C

(
[0, 1], mP(R)

)
As N → ∞, the empirical measure µN satisfies an LDP on
C ([0, 1],mP(R)) with speed N3T and an explicit rate function I.

Remark

• Under the diffusive scaling, N → ∞ and N2T fixed,
[Dembo–Shkolnikov–Varadhan–Zeitouni 16] proved the LDP for a gen-
eral class of rank-based diffusions.

• The behavior under N2T → ∞ (considered here) is very different from
that under the diffusion scaling (considered in [DSVZ 12]).

Corollary

Under Z(0, ·) = δ0, E[
∏n

c=1 Z(T,NTxc)Nmc ] ≈ exp(N3T · LSHE(m⃗))

LSHE(m⃗) = LSHE(m1, . . . ,mn)

:=
m3

24
+

n∑
c,c′=1

1
2
mcmc′ |xc − xc′ | − I∗

I∗ := inf
{
I(µ) : µ ∈ C ([0, 1],mP(R)), µ(0) =

n∑
c=1

mcδxc , µ(1) = mδ0

}
Theorem (T 23)

Unique minimizer of the infimum: ξ =
∑n

c=1 mcδξc
, the optimal deviation.
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Optimal deviation

dXN
i =

1
N

Nm∑
j=1

1
2

sgn(XN
j − XN

i ) ds+
1√
N2T

dBi(s)

Inertia clusters, ζ1, . . . , ζc

• ζc has mass mc.

• Start with velocity
(. . .− 1

2mc−1 +
1
2mc+1 + . . .).

• Merge according to conservation
of momentum.

Branches, b: c, c′ ∈ b if and only if ζc(1) = ζc′(1)

Optimal clusters ξ1, . . . , ξn and optimal deviation ξ

• ξc(s) :=

ζc(s) + (−ζb(1)) s, c ∈ b

ξ(s) =
∑n

c=1 mcδξc(s)
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Moments of SHE → LDP for KPZ

Proposition (T 23)

Let Rconc := {⃗r : f⋆,⃗r ≥ p, f⋆,⃗r is concave}. The functions

LSHE(m⃗) : [0,∞)n → [0,∞) IKPZ(⃗r) : Rconc → [0,∞)

are strictly convex and the Legendre transform of each other.

IKPZ(⃗r) = IKPZ(r1, . . . , rn) :=
∫
R dx ( 1

2 (∂xf⋆,⃗r)2 − 1
2 (∂xp)2)

Gibbs line ensembles [Corwin Hammond 14, 16] and [Ganguly–Hegde
22]. Our approach goes through moments and is different.
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n-point, upper-tail LDP for the KPZ equation

hN(t, x) := 1
N2T (h(Tt,NTx) + log

√
T + T

24 )

Corollary (T 23 & Lin–T 23)

Under delta initial condition Z(0, ·) = δ0, for any r⃗ ∈ R◦
conc,

P
[
|hN(1, xc)− rc| ≤ δ, c = 1, . . . , n

]
≈ e−N3T· IKPZ (⃗r)

N → ∞ and N2T = N2TN → ∞ first; δ → 0 later.

Covered scaling regimes

• Short or unit-order time T → 0 or T → 1: any deviation ≫ 1

• Long time T → ∞: any deviation ≫ T

Doesn’t cover the hyperbolic scaling regime, N = 1 and T → ∞,
hT(t, x) := 1

T (h(Tt,Tx) + log
√

T + T
24 ).

Li-Cheng Tsai Moments of SHE & limit shapes of KPZ



Related results

First, when n = 1 and x1 = 0, we recover IKPZ(r) = 4
√

2
3 r3/2.

One point, upper-tail LDPs
• Hyperbolic scaling regime

P
[ 1

T (h(T, 0) + log
√

T + T
24 ) ≈ r

]
≈ e−T 4

√
2

3 r3/2
, T → ∞, r > 0

◦ Predicted in [Le Doussal–Majumdar–Schehr 16]; proven in [Das–T 21].
• Other scaling regimes and/or other initial conditions
◦ Physics: Asida, Hartman, Janas, Kolokolov, Korshunov, Katzav,

Krajenbrink, Le Doussal, Majumdar, Livne, Meerson, Prolhac, Rosso,
Sasorov, Schmidt, Smith, Vilenkin, . . .

◦ Math rigorous: Corwin, Das, Gaudreau Lamarre, Ghosal, Lin, Tsai, . . .
n-point upper tails and terminal-time limit shape
• [Ganguly–Hegde 22]
◦ Detailed and optimal n-point bounds that hold for all t > t0.
◦ When specialized onto the hyperbolic scaling regime: the n-point LDP

and the terminal-time limit shape f⋆,r.
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Spacetime limit shape

EN,δ (⃗r) := {|hN(1, xc)− rc| ≤ δ, c = 1, . . . , n}

Theorem (Lin–T 23)

Under Z(0, ·) = δ0, for any r⃗ ∈ R◦
conc and R < ∞,

P
[
∥hN − h⋆∥L ∞([ 1

R ,1]×[−R,R]) <
1
R

∣∣ EN,δ (⃗r)
]
−→ 1

N → ∞ and N2T = N2TN → ∞ first; δ → 0 later.
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Limit shape

Hydrodynamic limit (without conditioning)
• [Janjigian–Rassoul-Agha–Seppäläinen 22] The hydrodynamic limit h0 is

the entropy solution of ∂th0 = 1
2 (∂xh0)

2.
• [Amir–Corwin–Quastel 11] Here h0(t, x) = p(t, x) := −x2/(2t).

• Analogous to the hydrodynamic limits for the TASEP and ASEP
[Rost 81], [Rezakhanlou 91], [Seppäläinen 98]

Limit shape (with conditioning)
• h⋆(t, x) also solves ∂th⋆ = 1

2 (∂xh⋆)
2, but is a non-entropy solution.

• How to describe h⋆?
h⋆(1 − s, x) is the entropy solution of the backward equation
−∂sh⋆ = 1

2 (∂xh⋆)
2.

Consistent with [Jensen–Varadhan 00, 04]
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Mechanism of the deviations, noise-corridor effect

eh(T,NTx) = Z(T,NTx) = EBM

[
e
∫ T

0 ds η(T−s,X(s))δ0(X(T))
]

Consider n = 1 and x1 = 0.
A known phenomenon. [Seppäläinen 98], [Deuschel–Zeitouni 99]
The noise η makes itself anomalously large only around [0, 1]× {0}. We
call this the noise-corridor effect.
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Mechanism of the deviations, noise-corridor effect

When n > 1, a similar noise-corridor effect occurs, with the
noise-corridors being the shocks.

Proposition (T 23)

(Noise corridors in KPZ := shocks) = (optimal clusters in attractive BPs)
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Summary and open problems

We utilize moments and a tree structure to obtain the spacetime limit
shape. A crucial idea is to utilize the noise-corridor effect.

Conjecture. The same results should hold in the hyperbolic scaling
regime (hT(t, x) := 1

T (h(Tt,Tx) + log
√

T + T
24 ), T → ∞) and for r⃗ ∈ R

(all upper-tail deviations). The limit shape h⋆ is still defined as the
backward entropy solution, though the shocks are no longer piecewise
linear when r⃗ /∈ Rconc.

More general initial conditions. One may seek to use the convolution
formula as in [Corwin–Ghosal 20] and [Ghosal–Lin 23].

Possibility of symmetry breaking. Predicted in the weak-noise
regime [Janas–Kamenev–Meerson 16], [Smith–Kamenev–Baruch
Meerson 18], [Krajenbrink–Le Doussal 17, 19]; should hold here too.

Conjecture. Symmetry breaking under the two-delta initial condition
Z(0, ·) = δ−NT + δ+NT . Very preliminary calculations in [Appendix B,
Lin–T 23].
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