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Nondivergence Form Equations in Random Environments

We consider
−tr

(
A(x)D2u

)
= 0,

and the parabolic counterpart

∂tu − tr
(
A(x)D2u

)
= 0,

where the symmetric, matrix-valued function A is an element of the set
of admissible coefficient fields Ω:

Ω :=

{
A(·) : λId ≤ A(·) ≤ ΛId , [A]C0,α0 (Rd ) ≤ K0

}
.

We will make this random by putting an appropriate probability measure
P on this set.
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A Way of “Random Coefficients”

For every Borel subset U ⊆ Rd

F(U) := σ–algebra generated by the family of random variables
{A 7→ A(x) : x ∈ U} .

Define F := F(Rd), and then consider a probability space (Ω,F ,P).

Furthermore, we define a measurable translation operator
{τy}y∈Rd : Ω→ Ω, according to

(τyA)(x) := A(x + y)



Introduction Main Results and Consequences Conclusion

A Way of “Random Coefficients”

For every Borel subset U ⊆ Rd

F(U) := σ–algebra generated by the family of random variables
{A 7→ A(x) : x ∈ U} .

Define F := F(Rd), and then consider a probability space (Ω,F ,P).

Furthermore, we define a measurable translation operator
{τy}y∈Rd : Ω→ Ω, according to

(τyA)(x) := A(x + y)



Introduction Main Results and Consequences Conclusion

A Way of “Random Coefficients”

For every Borel subset U ⊆ Rd

F(U) := σ–algebra generated by the family of random variables
{A 7→ A(x) : x ∈ U} .

Define F := F(Rd), and then consider a probability space (Ω,F ,P).

Furthermore, we define a measurable translation operator
{τy}y∈Rd : Ω→ Ω, according to

(τyA)(x) := A(x + y)



Introduction Main Results and Consequences Conclusion

A Way of “Random Coefficients”

For every Borel subset U ⊆ Rd

F(U) := σ–algebra generated by the family of random variables
{A 7→ A(x) : x ∈ U} .

Define F := F(Rd), and then consider a probability space (Ω,F ,P).

Furthermore, we define a measurable translation operator
{τy}y∈Rd : Ω→ Ω, according to

(τyA)(x) := A(x + y)



Introduction Main Results and Consequences Conclusion

Assumption on the Environment

(P1) P has Zd–stationary statistics: that is, for every z ∈ Zd and E ∈ F ,

P [E ] = P [τzE ] .

(P2) P has a finite range of dependence: that is, for all Borel subsets
U,V of Rd such that dist(U,V ) ≥ 1,

F(U) and F(V ) are P–independent.

(This is a stronger version of ergodicity)
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Homogenization of the PDE
For A(·) ∈ Ω, and for each ε > 0, consider{

−tr
(
A
(
x
ε

)
D2uε

)
= 0 in U,

uε = g on ∂U.

Homogenization Statement: There exists a deterministic matrix A such
that for P-a.e A, uε → u uniformly in U, where u solves{

−tr
(
AD2u

)
= 0 in U,

u = g on ∂U.

Remark: Equivalently, by rescaling we can study

−tr
(
A(x)D2uε

)
= 0 and − tr

(
AD2ūε

)
= 0 in ε−1U.

Main Challenges:
I Identifying A

I Proving the convergence of uε → u.
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)
= 0 in ε−1U.

Main Challenges:
I Identifying A

I Proving the convergence of uε → u.



Introduction Main Results and Consequences Conclusion

Homogenization of the PDE
For A(·) ∈ Ω, and for each ε > 0, consider{

−tr
(
A
(
x
ε

)
D2uε

)
= 0 in U,

uε = g on ∂U.

Homogenization Statement: There exists a deterministic matrix A such
that for P-a.e A, uε → u uniformly in U, where u solves{

−tr
(
AD2u

)
= 0 in U,

u = g on ∂U.

Remark: Equivalently, by rescaling we can study

−tr
(
A(x)D2uε

)
= 0 and − tr

(
AD2ūε
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The PDE Approach: Correctors

Typical ansatz of homogenization,

uε(x) ≈ u(x) + ε2φ
(x
ε

)
+ . . .

where φ is the 2nd-order corrector.

Formally, the corrector equation should satisfy{
−tr

(
A(x)(D2u + D2φ)

)
= −tr(AD2u) in Rd ,

lim
ε→0

∣∣∣∣ε2φ∣∣∣∣
L∞

= 0 P-a.s.

The typical approach for such equations has been to study an appropriate
approximate corrector which allows us to both identify A and also prove
the convergence. The construction of A is variational.
References: Kozlov and Jikov, Kozlov, Oleinik (Linear); Caffarelli,
Souganidis, and Wang (Fully Nonlinear)
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Quantitative Homogenization
Given that we are interested in the P-a.s. convergence of uε → u, we
now ask, for which f , g do we have

P
[

sup
x∈U
|uε(x)− u(x)| ≥ f (ε)

]
≤ g(ε)?

References: Yurinskii (Linear); Caffarelli and Souganidis (Fully Nonlinear);
Armstrong and L. (Linear).
Armstrong and Smart (Fully Nonlinear): There exists α ∈ (0, 1) and
C > 0 such that

P
[

sup
x∈U
|uε(x)− u(x)| ≥ εα

]
≤ C exp(−ε−d

−
).

(For every p ∈ (0, d),

P
[

sup
x∈U
|uε(x)− u(x)| ≥ εα

]
≤ C exp(−ε−p).)
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The First Stochastic Homogenization Result (Papanicolaou
and Varadhan ’82)

Consider (Xt)t≥0, a stochastic process evolving according to the SDE

dXt = σ(Xt) dWt

where {Wt}t>0 is a Brownian motion and σ : Rd → Rd is a given Hölder
continuous function satisfying the uniform nondegeneracy condition

λId ≤ 1
2
σσt ≤ ΛId in Rd .

Then for A := 1
2σσ

t , the infinitesimal generator of this process is given by

ϕ 7→ tr(AD2ϕ).

Let PA denote the probability measure associated to (Xt)t≥0.
Quenched Invariance Principle: For P-a.e. A, the rescaled
process X ε

t := εXt/ε2 converges in law (under PA) as ε→ 0 to a
Brownian motion with covariance (2A)

1
2 .
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The Probability Approach: Ergodic Theorem of the
Coefficients

The formulation is in terms of the environment viewed from the point of
view of the particle.

I One studies the paths A(Xt) = τXtA(0) in Ω (where X0 = 0).
I A(Xt) is a Markov process under PA.

Thus, for any θ ∈ Rd ,

EPA
[

exp

(
i

〈
θ,

Xt√
t

〉
+

1
2

〈
θ,

1
t

(ˆ t

0
Aij(Xs) ds

)
θ

〉)]
= EPA

[exp(0)] = 1.

If we could identify A such that for P-a.e. A, and PA almost surely
(equivalently P⊗ PA-almost-surely),

lim
t→∞

1
t

ˆ t

0
Aij(Xs)ds = Aij ,

then

lim
t→∞

EPA

[
exp

(
i

〈
θ,

Xt√
t

〉)]
= exp

(
−
〈
θ,

1
2
Aijθ

〉)
.
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Invariant Measures

Establishing an ergodic theorem amounts to finding an ergodic invariant
measure µ, which means P⊗ PA-almost surely,

lim
t→∞

1
t

ˆ t

0
Aij(Xs)ds =

ˆ
Ω

Aij dµ.

The invariant measure dµ should be mutually absolutely continuous with
respect to dP. In particular, we seek m = m(A) such that dµ = mdP.
In this case, we would have that

Aij :=

ˆ
Ω

AijmdP

References (Qualitative): Papanicolaou and Varadhan (Diffusion
Processes); Lawler (BRWRE)
References (Quantitative): Guo, Peterson, Tran (BRWRE); Guo and
Tran (BRWRE)
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Motivation: Unifying the PDE and Probability Perspectives

I Typical approaches using PDEs do not identify A via this invariant
measure.

I Since this model is nonreversible, the invariant measure does not
have an explicit representation formula.

I What is the invariant measure m in the PDE setting?
I How can we improve our understanding of these two methods,

individually and globally, to promote more collaborative approaches
on this topic?
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Transition Probabilities and the Parabolic Green Function

Markov Diffusion Processes are completely characterized by their
transition probabilities.

In the language of PDEs, the density of the transition probability is
exactly the parabolic Green Function. For each A ∈ Ω, we consider
P(t, x , y) solving, for each y ∈ Rd ,{

∂tP(·, ·, y)− tr(AD2P(·, ·, y)) = 0 in (0,∞)× Rd ,

P(0, ·, y) = δ(· − y) on Rd .

Similarly, we have P(t, x − y) the parabolic Green Function of the
homogenized equation,{

∂tP(·, · − y)− tr(AD2P(·, · − y)) = 0 in (0,∞)× Rd ,

P(0, ·, y) = δ(· − y) on Rd ,

where we know P is a Gaussian.
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Mass Preservation

The homogenized equation (constant coefficient) preserves mass, so
ˆ
Rd

P(t, x − y) dx = 1 for all t ≥ 0, for all y ∈ Rd .

What about P(t, ·, y)? What happens to the mass in the process of
homogenization?

Do we witness “effective mass conservation”?
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Theorem (Armstrong, Fehrman, L., 2022)
Let v solve {

∂tv − tr(AD2v) = 0 in (0,∞)× Rd ,
v(0, x) = v0 on Rd ,

|v0(x)| ≤ MR−d exp

(
−|x |

2

R2

)
,

There exists γ ∈ (0, 1), a random variable Y, with E[exp(Yd−)] ≤ C and
a random constant c[v0], such that, for every R ≥ Y, for every t ≥ R2,

∣∣v(t, x)− c[v0]P(t, x)
∣∣ ≤ CM

( t

R2

)−γ
t−

d
2 exp

(
−|x |

2

Ct

)
,

where
c[v0] = lim

t→∞

ˆ
Rd

v(t, x) dx .
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Theorem (contd.)

∣∣v(t, x)− c[v0]P(t, x)
∣∣ ≤ CM

( t

R2

)−γ
t−

d
2 exp

(
−|x |

2

Ct

)
,

If moreover, for some σ ∈ (0, 1], v0 ∈ C 0,σ(BR), then for
c[v0] = limt→∞

´
v(t, x) dx ,∣∣∣∣c[v0]−

ˆ
Rd

v0(x) dx

∣∣∣∣ ≤ CM(1 + M−1Rd+σ[v0]C0,σ(BR ))R
−γ .

Remark: Reminiscent of the classical fact that under certain hypotheses,
any solution of the heat equation asymptotically converges to the
parabolic Green function weighted by the initial mass.
Remark: The results become deterministic for R ≥ Y where
E[exp(Yp)] ≤ C for p ∈ (0, d).
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Homogenization for the Parabolic Green Function

Theorem (Armstrong, Fehrman, L., 2022)
There exists a random variable Y with E[exp(Yd−)] ≤ C , such that for
every y ∈ �0 (the unit cube), there is a positive random constant m(y)
such that, for every t ≥ Y2 and x ∈ Rd ,

∣∣P(t, x , y)−m(y)P(t, x − y)
∣∣ ≤ Cm(y)

(
t

Y2

)−γ
t−

d
2 exp

(
−|x − y |2

Ct

)
,

where m(y) := limt→∞
´
Rd P(t, x , y) dx .

By stationarity, we can construct m(y) for any y ∈ Rd .

This is a quantitative homogenization result for the parabolic Green
function, showing that

P(t, ·, y)
t→∞−−−→ m(y)P(t, ·, y).

What is this m(y)?
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Unravelling the m(y)

The function y 7→ m(y) turns out to be a Zd–stationary invariant
measure with E[

ffl
�0

m(y) dy ] = 1.

By an invariant measure m in an open subset U ⊆ Rd , we mean a
solution of the adjoint equation, which is formally written in coordinates
as

−
d∑

i,j=1

∂xi∂xj
(
Aijm

)
= 0 in U.

The equation is interpreted in the weak sense: precisely, a Radon
measure µ is an invariant measure in U if

ˆ
U

tr
(
A(y)D2ϕ(y)

)
dµ(y) = 0, ∀ϕ ∈ C∞c (U)

and we identify dµ(y) = m(y) dy . This m(y), lifted into the probability
space, is the exact same unique invariant measure as constructed in
Papanicolaou and Varadhan!
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Quantifying Weak Convergence
Theorem (Armstrong, Fehrman, L., 2022)
There exists a random variable Y with E[exp(Yd−)] ≤ C , such that for
every R ≥ Y, for m as defined before,∣∣∣∣ 

R�0

m(x) dx − 1
∣∣∣∣+

∣∣∣∣ 
R�0

m(x)A(x) dx − A
∣∣∣∣ ≤ CR−γ .

Observe that the function m(x) ≡ 1 is precisely the invariant measure to

−
d∑

i,j=1

∂xi∂xj
(
Aijm

)
= 0,

subject to E[
ffl
�0

m(x) dx ] = 1, so the first part is a homogenization
result for the invariant measure.

The second part gives us a way of computing the coefficents in
nondivergence form homogenization, which was priorly not known from
the “nonlinear” approach to homogenization.
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Optimal Stochastic Integrability

The prior estimates also demonstrate that all of our results exhibit
optimal stochastic integrability. By Chebyshev, we have that

P
[∣∣∣∣ 

R�0

m(x)A(x) dx − A
∣∣∣∣ > CR−γ

]
≤ C exp(−Rp)

for p ∈ (0, d).

In a “random checkerboard” with white squares (A = Id) and black
squares (A = 2Id), then the homogenized coefficient Id < A < 2Id.
However, the probability of deviating from A of size at least 1

2 must be
no smaller than the probability of seeing all white squares or all black

squares. This probability is like
( 1

2

)Rd

= exp(−cRd).
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Consequence 1: Heat Kernel Estimates
Our result implies that for t ≥ Y2,

cm(y)t−
d
2 exp

(
−|x − y |2

ct

)
≤ P(t, x , y) ≤ Cm(y)t−

d
2 exp

(
−|x − y |2

Ct

)
,

and Y−q ≤ infy∈BY m(y) ≤ supy∈BY m(y) ≤ Y(d−1−δ), for some q
universal.

Similar results by Escauriaza (PDE methods), Mustapha (Discrete,
Probability Methods), Guo and Tran (Discrete, Probability Methods);
also Deuschel and Guo in discrete time-dependent setting.[

c
m(y)´

B√t(y)
m(z) dz

exp

(
−|x − y |2

ct

)
≤ P(t, x , y) ≤ C

m(y)´
B√t(y)

m(z) dz
exp

(
−|x − y |2

Ct

)]
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Consequence 2: Quantitative Ergodicity.

Our results imply a rate of convergence on the ergodic theorem for the
environment process. There exists γ ∈ (0, 1/2) and a random variable Y
such that E[exp(Yd−)] ≤ C , and for all T ≥ Y2,

PA

[∣∣∣∣∣ 1T
ˆ T

0
Aij(Xs) ds − Aij

∣∣∣∣∣ ≥ T−γ

]
≤ C exp

(
−T 1−2γ

C

)
.

This is a quenched estimate; it depends on the environment only through
Y, while sharply bounding the trajectories.
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Summary

I We prove the first quantitative homogenization result for the
parabolic Green function (local limit theorem), using PDE methods.

I From there, we construct the unique ergodic invariant measure from
Papanicolaou and Varadhan in a quenched fashion.

I We obtain several consequences: heat kernel bounds and quenched
quantitative ergodicity.

I Further questions: obtaining optimal convergence rates (central limit
theorem) for the correctors.
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Thank you very much for your attention.
Happy Birthday Timo!
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A few words about the proof of the First Theorem
I Homogenization results allow us to deduce that heterogeneous

solutions and homogeneous solutions are very close to one another
on a bounded domain, up until some finite time.

I We also have that since the initial data is tented from above by a
Gaussian, the tails of the solution are very well-controlled (decaying
like Gaussians out on the tails).

I This lets us prove the estimate up until some large, but finite time.
In this time, since our solution is close to the solution of the heat
equation, our solution has spread out in a very precise way. This
implies that the solution at the terminal time can be tented by a
Gaussian on a larger lengthscale.

I We then bootstrap this argument to a larger lengthscale. We keep
very close track of errors that we make in every step, and this allows
us to conclude that

lim
t→∞

ˆ
Rd

v(t, x) dx exists.
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The Second Theorem: Quantitative Homogenization of the
Parabolic Green Function

Recall that since m(y) := limt→∞
´
Rd P(t, x , y) dx , we simply apply the

prior Theorem to P(t, x , y) for each y ∈ Rd . We just need a small PDE
argument to argue that

|P(R2, x , y)| ≈≤ CR−d exp

(
−|x − y |2

R2

)
.

This implies

∣∣P(t, x , y)−m(y)P(t, x − y)
∣∣ ≤ Cm(y)

(
t

Y2

)−γ
t−

d
2 exp

(
−|x − y |2

Ct

)
,

where m(y) := limt→∞
´
Rd P(t, x , y) dx .
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Proof of Invariance
Recall that by the first Theorem, if v solves the heterogeneous equation
with v(0, x) = v0 = φ ∈ C∞c , then by an application of the first and
second Theorems,

c[v0] = lim
t→∞

ˆ
Rd

v(t, x) dx = lim
t→∞

ˆ
Rd

ˆ
Rd

P(t, x , y)v0(y) dy dx

=

ˆ
Rd

m(y)v0(y) dy .

Moreover, we know that c[v0] = c[v(t, ·)] for any t > 0, and this is
invariance.

This implies that

0 = ∂t

ˆ
Rd

m(y)v(t, y) dy =

ˆ
Rd

m(y)∂tv(t, y) dy =

ˆ
Rd

m(y)tr(AD2v(t, y)) dy .

Sending t → 0, we get ˆ
Rd

m(y)tr(AD2φ(y)) = 0.



Introduction Main Results and Consequences Conclusion

Proof of Invariance
Recall that by the first Theorem, if v solves the heterogeneous equation
with v(0, x) = v0 = φ ∈ C∞c , then by an application of the first and
second Theorems,

c[v0] = lim
t→∞

ˆ
Rd

v(t, x) dx = lim
t→∞

ˆ
Rd

ˆ
Rd

P(t, x , y)v0(y) dy dx

=

ˆ
Rd

m(y)v0(y) dy .

Moreover, we know that c[v0] = c[v(t, ·)] for any t > 0, and this is
invariance.
This implies that

0 = ∂t

ˆ
Rd

m(y)v(t, y) dy =

ˆ
Rd

m(y)∂tv(t, y) dy =

ˆ
Rd

m(y)tr(AD2v(t, y)) dy .

Sending t → 0, we get ˆ
Rd

m(y)tr(AD2φ(y)) = 0.


	Introduction
	stochhom
	Probability

	Main Results and Consequences
	Thms
	Consequences

	Conclusion
	theend


