Octonions and spinors

John Huerta
May 29th, 2023 - Banff International Research Station
CAMGSD
Instituto Superior Técnico
University of Lisbon

Outline

1. The octonions.
2. Clifford algebras and spinors.
3. Octonions as spinors.

Octonions

The normed division algebras

Theorem (Hurwitz 1898)

There are precisely four normed division algebras:

- \mathbb{R}, the real numbers;
- \mathbb{C}, the complex numbers;
- \mathbb{H}, the quaternions;
- \mathbb{O}, the octonions.

Each of these is normed:

$$
|x y|=|x||y|, \text { for all } x, y \in \mathbb{A} .
$$

The real and complex numbers

Eudoxus of Cnidus (A. Strick, MacTutor)

Guiseppe Cardano
(A. Strick, MacTutor)

The real numbers:

$$
\mathbb{R}=\operatorname{span}_{\mathbb{R}}\{1\}
$$

the "dependable breadwinner" of number systems.

The complex numbers:

$$
\mathbb{C}=\operatorname{span}_{\mathbb{R}}\{1, i\}, \quad \text { where } i^{2}=-1
$$

the flashy younger brother.

Quaternions and octonions

William Rowan Hamilton (A. Strick, MacTutor)

The quaternions:

$$
\mathbb{H}=\operatorname{span}_{\mathbb{R}}\{1, i, j, k\},
$$

where $i^{2}=j^{2}=k^{2}=i j k=-1$; the eccentric cousin.

Mnemonic for multiplying quaternions:

E.g., $i j=k=-j i$.

Quaternions and octonions

The octonions

$$
\mathbb{O}=\operatorname{span}_{\mathbb{R}}\left\{1, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}
$$

where $e_{i}^{2}=-1$; the crazy old uncle!

Multiplying octonions with the Fano plane, $\mathbb{F}_{2} \mathbb{P}^{2}$:

E.g., $e_{7} e_{1}=e_{3}=-e_{1} e_{7}$.

In the family of real algebras:

The real numbers are the dependable breadwinner of the family.... The complex numbers are a slightly flashier but still respectable younger brother.... The quaternions, being noncommutative, are the eccentric cousin who is shunned at important family gatherings. But the octonions are the crazy old uncle nobody lets out of the attic: they are nonassociative.

The Octonions

Nonassociative, but alternative.

(1) is not associative:

$$
\begin{array}{cc}
\left(e_{1} e_{2}\right) e_{3}=-e_{1}\left(e_{2} e_{3}\right) \\
e_{4} e_{3} & e_{1} e_{5} \\
-e_{6} & e_{6}
\end{array}
$$

Nonassociative, but alternative.

But © is alternative:

$$
\begin{aligned}
& (x x) y=x(x y), \\
& (x y) x=x(y x), \\
& (y x) x=y(x x),
\end{aligned}
$$

for any $x, y \in \mathbb{O}$.
Just enough associativity!

The Cayley-Dickson construction

- Just as $\mathbb{C}=\mathbb{R}^{2}$, we can define the octonions as pairs of quaternions:

$$
\begin{aligned}
& \mathbb{O}=\mathbb{H}^{2} \text {, where }(a, b)(c, d)=(a c-d \bar{b}, d a+b \bar{c}) . \\
& \quad q_{1}+q_{2} l, \quad l^{2}=-1, \quad l \ell l^{-1}=\bar{q}
\end{aligned}
$$

The Cayley-Dickson construction

- Just as $\mathbb{C}=\mathbb{R}^{2}$, we can define the octonions as pairs of quaternions:

$$
\mathbb{O}=\mathbb{H}^{2}, \text { where }(a, b)(c, d)=(a c-d \bar{b}, d a+b \bar{c})
$$

- This works for any $*$-algebra! It's called the Cayley-Dickson construction.

The Cayley-Dickson construction

- Just as $\mathbb{C}=\mathbb{R}^{2}$, we can define the octonions as pairs of quaternions:

$$
\mathbb{O}=\mathbb{H}^{2}, \text { where }(a, b)(c, d)=(a c-d \bar{b}, d a+b \bar{c})
$$

- This works for any $*$-algebra! It's called the Cayley-Dickson construction.
- Iterating the Cayley-Dickson construction gives:

$$
\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}, \mathbb{S}=\mathbb{O}^{2}, \mathbb{S}^{2}, \ldots
$$

an infinite sequence of $*$-algebras!

There are only four normed division algebras ...

A normed division algebra \mathbb{A} is a possibly nonassociative real algebra with unit, equipped with a positive-definite quadratic form $|\cdot|^{2}: \mathbb{A} \rightarrow \mathbb{R}$ satisfying

$$
\begin{gathered}
\text { division } \\
x y=0 \\
\Rightarrow x=0 x \\
y=0
\end{gathered}
$$

There are only four normed division algebras ...

A normed division algebra \mathbb{A} is a possibly nonassociative real algebra with unit, equipped with a positive-definite quadratic form $|\cdot|^{2}: \mathbb{A} \rightarrow \mathbb{R}$ satisfying

$$
|x y|=|x||y|, \text { for all } x, y \in \mathbb{A}
$$

Theorem (Hurwitz 1898)

There are only four normed division algebras:
$\mathbb{R}, \mathbb{C}, \mathbb{H}$, and \mathbb{O}.

The proof goes through Clifford algebras!

Clifford algebras: definition.

The Clifford algebra $\mathrm{C} \ell(V, g)$ on the real inner product space (V, g) is the real associative algebra generated by V satisfying the Clifford relation:

$$
v^{2}=g(v, v), \text { for } v \in V
$$

William Kingdon Clifford

(D. Chisholm)

- g is nondegenerate, but not necessarily positive definite!
- The Clifford relation is equivalent to:

$$
v w+w v=2 g(v, w), \text { for } v, w \in V
$$

Clifford algebras: classification.

Write $\mathrm{C} \ell(p, q)$ for the Clifford algebra of $\mathbb{R}^{p, q}$.

Theorem

- As a real algebra, $\mathrm{C} \ell(p, q) \cong M_{n}(\mathbb{K}), n \times n$ matrices $/ \mathbb{K}$;
- The size n is fixed by $\operatorname{dim} C \ell(p, q)=2^{p+q}$;
- The algebra of coefficients is fixed by the Clifford algebra clock:

Clifford algebras: examples.

$$
\begin{aligned}
& \left.\begin{array}{l}
C l(0,0)=\mathbb{R} \\
C l(0,1)=\mathbb{R} \\
C l(0,2)=\mathbb{H}
\end{array}\right], \quad \begin{array}{l}
\mathbb{R} \\
C l
\end{array}, \quad, \quad k=i j \\
& \mathrm{Cl}(0,3)=H H_{a} \oplus H \sim H_{2}{ }_{2}+_{R} \\
& \left(q_{1}, q_{2}\right) \cdot s_{2}=q_{1} s_{2} \\
& C l(0,7)=M_{8}(\mathbb{R}) \oplus M_{8}(\mathbb{R}) \\
& 2^{7}=2 \cdot 2^{3} \times 2^{3} \\
& C l(8,0)=M_{16}(\mathbb{R})=\operatorname{cl}(9,8)
\end{aligned}
$$

Sketch of Hurwitz's theorem

Let \mathbb{A} be a normed division algebra, and define $\operatorname{Im} \mathbb{A}:=1^{\perp}$.
Claim: \mathbb{A} is a module for the Clifford algebra $\mathrm{C} \ell(\operatorname{Im} \mathbb{A})$.

Example

When $\mathbb{A}=\mathbb{O}$, we define a homomorphism:

$$
\begin{aligned}
\gamma_{L}: \mathrm{C} \ell(\operatorname{Im} \mathbb{O}) & \rightarrow \operatorname{End}(\mathbb{O}) \\
x \in \operatorname{Im} \mathbb{O} & \mapsto x_{L},
\end{aligned}
$$

where $x_{L}: \mathbb{O} \rightarrow \mathbb{O}$ denotes left multiplication, $x_{L}(y)=x y$.

$$
\begin{aligned}
& x_{L}^{2}=-|x|^{2} \\
& x_{L} x_{L}(y)=x(x y)=(x x) y \\
& C h\left(I \mu(D)-| |^{2}\right) \rightarrow \epsilon_{\forall}(D)=-|x|^{2} y
\end{aligned}
$$

Sketch of Hurwitz's theorem

Let \mathbb{A} be a normed division algebra, and define $\operatorname{Im} \mathbb{A}:=1^{\perp}$.
Claim: \mathbb{A} is a module for the Clifford algebra $\mathrm{C} \ell(\operatorname{Im} \mathbb{A})$.
Thus given \mathbb{A} a normed division algebra, we get a Clifford algebra $\mathrm{C} \ell(V)$ and a module M such that:

$$
\operatorname{dim} M=\operatorname{dim} V+1
$$

Sketch of Hurwitz's theorem

Let \mathbb{A} be a normed division algebra, and define $\operatorname{Im} \mathbb{A}:=1^{\perp}$.
Claim: \mathbb{A} is a module for the Clifford algebra $\mathrm{C} \ell(\operatorname{Im} \mathbb{A})$.
Thus given \mathbb{A} a normed division algebra, we get a Clifford algebra $\mathrm{C} \ell(V)$ and a module M such that:

$$
\operatorname{dim} M=\operatorname{dim} V+1
$$

That's rare!

- $\mathrm{C} \ell(0,0)=\mathbb{R}$, and has module \mathbb{R};
- $\mathrm{C} \ell(0,1)=\mathbb{C}$, and has module \mathbb{C};
- $\mathrm{C} \ell(0,3)=\mathbb{H} \oplus \mathbb{H}$, and has modules $\mathbb{H}_{L}, \mathbb{H}_{R}$;
- $\mathrm{C} \ell(0,7)=M_{8}(\mathbb{R}) \oplus M_{8}(\mathbb{R})$, and has modules $\mathbb{R}_{L}^{8}, \mathbb{R}_{R}^{8}$.

Spinors

Geometry and the Clifford relation

Question
Why are Clifford algebras related to geometry?
The fundamental calculation
Let $v \in V$ be a unit vector. Compute $v w v^{-1}$:

$$
\begin{aligned}
v w v^{-1=} & -w v v^{-1} \\
& +2 g(v, w) v^{-1} \\
-v w v^{-1}= & w-2 g(v, w) v
\end{aligned}
$$

The fundamental calculation

Proposition

The negative conjugate by a unit vector v is reflection in the hyperplane v^{\perp} :

$$
\mathbf{R}_{v}(w)=-v w v^{-1} .
$$

Cartan's theorem

Theorem (Cartan)

Any rotation $g \in \mathrm{SO}(V)$ can be decomposed into an even number of reflections:

$$
g=\mathbf{R}_{v_{1}} \mathbf{R}_{v_{2}} \cdots \mathbf{R}_{v_{2 n}} .
$$

Spin groups

Define the spin group to be:

$$
\operatorname{Spin}(V)=\left\{v_{1} v_{2} \cdots v_{2 n} \in \mathrm{C} \ell(V): g\left(v_{i}, v_{i}\right)= \pm 1, n \in \mathbb{N}\right\} .
$$

There's a 2-to-1 and onto homomorphism:

$$
\begin{aligned}
\rho: \operatorname{Spin}(V) & \rightarrow \operatorname{SO}(V) \\
v_{1} v_{2} \cdots v_{2 n} & \mapsto \mathbf{R}_{V_{1}} \mathbf{R}_{V_{2}} \cdots \mathbf{R}_{V_{2 n}} .
\end{aligned}
$$

Spin representations

- $\operatorname{Spin}(V)$ has more reps than $\operatorname{SO}(V)$!
- Since $\operatorname{Spin}(V) \subseteq \mathrm{C} \ell(V), \mathrm{C} \ell(V)$-modules yield representations.
- To identify irreps note that $\operatorname{Spin}(V) \subseteq \mathrm{C} \ell(V)_{+}$, the even part of the \mathbb{Z}_{2}-graded $\mathrm{C} \ell(V)$.

Simple modules of $\mathrm{C} \ell(V)_{+} \leftrightarrow$ spin reps of $\operatorname{Spin}(V)$.

Spin representations

Proposition

$$
\mathrm{C} \ell(p, q)_{+} \cong \mathrm{C} \ell(p, q-1) \cong \mathrm{C} \ell(q, p-1)
$$

Depending on dimension and signature, either:

- $\mathrm{C} \ell(V)_{+} \cong M_{n}[\mathbb{K}] \Rightarrow$ one spin rep $S \cong \mathbb{K}^{n}$;
- $\mathrm{C} \ell(V)_{+} \cong M_{n}[\mathbb{K}] \oplus M_{n}[\mathbb{K}] \Rightarrow$ two spin reps:

$$
S_{+} \cong \mathbb{K}_{L}^{n}, \text { and } S_{-} \cong \mathbb{K}_{R}^{n}
$$

- Warning: Here $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}$, an associative normed division algebra.
- But for some special dimensions, $\mathbb{K}=\mathbb{O}$ makes more sense!

Octonions as spinors

Spin(7)

- We know that $\mathrm{C} \ell(0,7) \cong M_{8}(\mathbb{R}) \oplus M_{8}(\mathbb{R})$, with modules \mathbb{R}_{L}^{8} and \mathbb{R}_{R}^{8}.
- Secretly $\mathbb{R}^{8} \cong \mathbb{O}$!
- Recall the homomorphism:

$$
\begin{aligned}
\gamma_{L}: \mathrm{C} \ell(\operatorname{Im} \mathbb{O}) & \rightarrow \operatorname{End}(\mathbb{O}) \\
x \in \operatorname{Im} \mathbb{O} & \mapsto x_{L},
\end{aligned}
$$

where $x_{L}: \mathbb{O} \rightarrow \mathbb{O}$ denotes left multiplication, $x_{L}(y)=x y$.

- This works since $x_{L} x_{L}(s)=x(x s)=(x x) s=-|x|^{2} s$.

Spin(7)

- In exactly the same way:

$$
\begin{aligned}
\gamma_{R}: \mathrm{C} \ell(\operatorname{Im} \mathbb{O}) & \rightarrow \operatorname{End}(\mathbb{O}) \\
x \in \operatorname{Im} \mathbb{O} & \mapsto x_{R},
\end{aligned}
$$

where $x_{R}: \mathbb{O} \rightarrow \mathbb{O}$ denotes right multiplication, $x_{R}(y)=y x$.

- In fact:

$$
\mathrm{C} \ell(0,7) \cong\left\langle\left(x_{L}, x_{R}\right) \in \operatorname{End}(\mathbb{O}) \oplus \operatorname{End}(\mathbb{O}): x \in \operatorname{Im} \mathbb{O}\right\rangle
$$

and in turn:

$$
\operatorname{Spin}(7) \cong\left\{x_{1 L} x_{2 L} \cdots x_{2 n L} \in \operatorname{End}(\mathbb{O}): x_{i}^{2}=-1, n \in \mathbb{N}\right\}
$$

- This is the spin representation:

$$
x_{1 L} x_{2 L} \cdots x_{2 n L}(s)=x_{1}\left(x_{2}\left(\cdots\left(x_{2 n} s\right) \cdots\right)\right), \quad \text { for } s \in \mathbb{O} .
$$

Spin(7): summary

In dimension 7:

- Vectors are imaginary octonions:

$$
V=\operatorname{Im} \mathbb{O}
$$

- Spinors are octonions:

$$
S=\mathbb{O}
$$

- The action of $\operatorname{Spin}(7)$ on S is induced by left multiplication!

Spin(8)

- Let $V=\mathbb{O}, S_{+}=\mathbb{O}$, and $S_{-}=\mathbb{O}$. Triality!
- Define

$$
\begin{array}{rlll}
\gamma_{+}: V \otimes S_{+} & \rightarrow & S_{-} \\
V \otimes S_{+} & \mapsto & v s_{+} . \\
\gamma_{-}: V \otimes S_{-} & \rightarrow & S_{+} \\
V \otimes S_{-} & \mapsto & \bar{V} s_{-} .
\end{array}
$$

- $\mathrm{C} \ell(8) \cong\left\langle\left(\begin{array}{cc}0 & v_{L} \\ \bar{v}_{L} & 0\end{array}\right) \in \operatorname{End}\left(\mathbb{O}^{2}\right): v \in \mathbb{O}\right\rangle$.

Spin(8)

- Multiplying pairs of unit vectors, we learn:
$\left.\left.\operatorname{Spin}(8) \cong\left\langle\left(v_{1 L} \overline{V_{2}} L, \overline{V_{1}} L v_{2 L}\right) \in \operatorname{End}(\mathbb{O}) \oplus \operatorname{End}(\mathbb{O}):\right| v_{i}\right|^{2}=1\right\rangle$.
- These are the spin representations!

$$
v_{1} v_{2} \cdot s_{+}=\overline{v_{1}}\left(v_{2} s_{+}\right), \quad v_{1} v_{2} \cdot s_{-}=v_{1}\left(\overline{v_{2}} s_{-}\right)
$$

for any generator $v_{1} v_{2} \in \operatorname{Spin}(8)$.

Spin(8): summary

In dimension 8:

- Vectors and both kinds of spinors are octonions:

$$
V=\mathbb{O}, \quad S_{+}=\mathbb{O}, \quad S_{-}=\mathbb{O} .
$$

- Vectors act on S_{+}by left multiplication, and on S_{-}by conjugate left multiplication, swapping S_{+}and S_{-}.
- This induces the two spin reps of Spin(8).

