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Octonions



The normed division algebras

Theorem (Hurwitz 1898)

There are precisely four normed division algebras:

• R, the real numbers;

• C, the complex numbers;

• H, the quaternions;

• O, the octonions.

Each of these is normed:

|xy | = |x ||y |, for all x , y 2 A.
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The real and complex numbers

Eudoxus of Cnidus
(A. Strick, MacTutor)

The real numbers:

R = spanR{1},

the “dependable breadwinner” of number systems.

Guiseppe Cardano
(A. Strick, MacTutor)

The complex numbers:

C = spanR{1, i}, where i2 = �1,

the flashy younger brother.
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Quaternions and octonions

William Rowan Hamilton
(A. Strick, MacTutor)

The quaternions:

H = spanR{1, i , j , k},

where i2 = j2 = k2 = ijk = �1; the eccentric
cousin.

Mnemonic for multiplying quaternions:

k

i

j

E.g., ij = k = �ji .
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Quaternions and octonions

John T. Graves
(MacTutor)

The octonions

O = spanR{1, e1, e2, e3, e4, e5, e6, e7},

where e2
i = �1; the crazy old uncle!

Multiplying octonions with the Fano plane, F2P2:

i

e4

e3 e

e7

e1

e52

e6

E.g., e7e1 = e3 = �e1e7. 6



In the family of real algebras:

The real numbers are the dependable breadwinner of the family. . . .
The complex numbers are a slightly flashier but still respectable
younger brother. . . . The quaternions, being noncommutative, are
the eccentric cousin who is shunned at important family gatherings.
But the octonions are the crazy old uncle nobody lets out of
the attic: they are nonassociative.

John Baez
The Octonions
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Nonassociative, but alternative.

i

e4

e3 e

e7

e1

e52

e6

O is not associative:

(e1e2)e3 = �e1(e2e3).
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Nonassociative, but alternative.

But O is alternative:

(xx)y = x(xy),

(xy)x = x(yx),

(yx)x = y(xx),

for any x , y 2 O.

Just enough associativity!
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The Cayley–Dickson construction

• Just as C = R2, we can define the octonions as pairs of
quaternions:

O = H2, where (a, b)(c, d) = (ac � db, da + bc).

• This works for any ⇤-algebra! It’s called the
Cayley–Dickson construction.

• Iterating the Cayley–Dickson construction gives:

R, C, H, O, S = O2, S2, . . .

an infinite sequence of ⇤-algebras!
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There are only four normed division algebras . . .

A normed division algebra A is a possibly nonassociative real
algebra with unit, equipped with a positive-definite quadratic
form | · |2 : A ! R satisfying

|xy | = |x ||y |, for all x , y 2 A.

Theorem (Hurwitz 1898)

There are only four normed division algebras:

R, C, H, and O.

The proof goes through Clifford algebras!
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Clifford algebras: definition.

William Kingdon Clifford
(D. Chisholm)

The Clifford algebra C`(V , g) on the real inner
product space (V , g) is the real associative algebra
generated by V satisfying the Clifford relation:

v2 = g(v , v), for v 2 V .

• g is nondegenerate, but not necessarily positive definite!

• The Clifford relation is equivalent to:

vw + wv = 2g(v ,w), for v ,w 2 V .
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Clifford algebras: classification.

Write C`(p, q) for the Clifford algebra of Rp,q.

Theorem

• As a real algebra, C`(p, q) ⇠= Mn(K), n ⇥ n matrices /K;

• The size n is fixed by dimC`(p, q) = 2p+q;

• The algebra of coefficients is fixed by the Clifford algebra
clock:

p�q
times H

C
R

R� R

R

C
H

H�H
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Clifford algebras: examples.
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Sketch of Hurwitz’s theorem

Let A be a normed division algebra, and define ImA := 1?.

Claim: A is a module for the Clifford algebra C`(ImA).

Example

When A = O, we define a homomorphism:

�L : C`(ImO) ! End(O)

x 2 ImO 7! xL,

where xL : O ! O denotes left multiplication, xL(y) = xy .

That’s rare!

• C`(0, 0) = R, and has module R;
• C`(0, 1) = C, and has module C;
• C`(0, 3) = H�H, and has modules HL, HR;
• C`(0, 7) = M8(R)� M8(R), and has modules R8

L, R
8
R.
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Spinors



Geometry and the Clifford relation

Question

Why are Clifford algebras related to geometry?

The fundamental calculation

Let v 2 V be a unit vector. Compute vwv�1:
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The fundamental calculation

Proposition

The negative conjugate by a unit vector v is reflection in the
hyperplane v?:

Rv (w) = �vwv�1.
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Cartan’s theorem

Theorem (Cartan)

Any rotation g 2 SO(V ) can be decomposed into an even
number of reflections:

g = Rv1Rv2 · · ·Rv2n .
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Spin groups

Define the spin group to be:

Spin(V ) = {v1v2 · · · v2n 2 C`(V ) : g(vi , vi) = ±1, n 2 N} .

There’s a 2-to-1 and onto homomorphism:

⇢ : Spin(V ) ! SO(V )

v1v2 · · · v2n 7! Rv1Rv2 · · ·Rv2n .
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Spin representations

• Spin(V ) has more reps than SO(V )!

• Since Spin(V ) ✓ C`(V ), C`(V )-modules yield
representations.

• To identify irreps note that Spin(V ) ✓ C`(V )+, the even
part of the Z2-graded C`(V ).

Simple modules of C`(V )+ $ spin reps of Spin(V ).
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Spin representations

Proposition

C`(p, q)+ ⇠= C`(p, q � 1) ⇠= C`(q, p � 1).

Depending on dimension and signature, either:

• C`(V )+ ⇠= Mn[K] ) one spin rep S ⇠= Kn;

• C`(V )+ ⇠= Mn[K]� Mn[K] ) two spin reps:

S+
⇠= Kn

L, and S� ⇠= Kn
R.

• Warning: Here K = R,C,H, an associative normed
division algebra.

• But for some special dimensions, K = O makes more
sense!
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Octonions as spinors



Spin(7)

• We know that C`(0, 7) ⇠= M8(R)� M8(R), with modules R8
L

and R8
R.

• Secretly R8 ⇠= O!

• Recall the homomorphism:

�L : C`(ImO) ! End(O)

x 2 ImO 7! xL,

where xL : O ! O denotes left multiplication, xL(y) = xy .

• This works since xLxL(s) = x(xs) = (xx)s = �|x |2s.
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Spin(7)

• In exactly the same way:

�R : C`(ImO) ! End(O)

x 2 ImO 7! xR,

where xR : O ! O denotes right multiplication, xR(y) = yx .
• In fact:

C`(0, 7) ⇠= h(xL, xR) 2 End(O)� End(O) : x 2 ImOi ,

and in turn:

Spin(7) ⇠=
n

x1Lx2L · · · x2nL 2 End(O) : x2
i = �1, n 2 N

o
.

• This is the spin representation:

x1Lx2L · · · x2nL(s) = x1(x2(· · · (x2ns) · · · )), for s 2 O.
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Spin(7): summary

In dimension 7:

• Vectors are imaginary octonions:

V = ImO.

• Spinors are octonions:

S = O.

• The action of Spin(7) on S is induced by left multiplication!
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Spin(8)

• Let V = O, S+ = O, and S� = O. Triality!

• Define
�+ : V ⌦ S+ ! S�

v ⌦ s+ 7! vs+.

�� : V ⌦ S� ! S+

v ⌦ s� 7! vs�.

• C`(8) ⇠=

* 
0 vL

vL 0

!
2 End(O2) : v 2 O

+
.

25



Spin(8)

• Multiplying pairs of unit vectors, we learn:

Spin(8) ⇠= h(v1Lv2L, v1Lv2L) 2 End(O)� End(O) : |vi |2 = 1i.

• These are the spin representations!

v1v2 · s+ = v1(v2s+), v1v2 · s� = v1(v2s�).

for any generator v1v2 2 Spin(8).
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Spin(8): summary

In dimension 8:

• Vectors and both kinds of spinors are octonions:

V = O, S+ = O, S� = O.

• Vectors act on S+ by left multiplication, and on S� by
conjugate left multiplication, swapping S+ and S�.

• This induces the two spin reps of Spin(8).
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V

S+

S�
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