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Octonions



The normed division algebras

Theorem (Hurwitz 1898)

There are precisely four normed division algebras:

* R, the real numbers;

« C, the complex numbers;
« H, the quaternions;

* O, the octonions.

Each of these is normed:

I xy| = |x||y|, forall x,y € A.



The real and complex humbers

The real numbers:

R = SpanR{1 }7

the “dependable breadwinner” of number systems.

Eudoxus of Cnidus
(A. Strick, MacTutor)

The complex numbers:

C = spang{1, i}, where i* = —1,

the flashy younger brother.

Guiseppe Cardano
(A. Strick, MacTutor)



Quaternions and octonions

The quaternions:
H = SpanR{17 i7 j7 k}7

where i? = j? = k® = jjk = —1; the eccentric

William Rowan Hamilton cousin. ° ' :
(A. Strick, MacTutor) f) K ;\ — \ \O \/ s ,

f

Mnemonic for multiplying quaternions:

" JR=

= - L\’<J
oo

E.g., ij =k = —ji.



Quaternions and octonions

The octonions

O = spang{1, €4, €2, €3, €1, €5, €6, €7},

where e = —1; the crazy old uncle!

John T. Graves
(MacTutor)

Multiplying octonions with the Fano plane, FoP?:

E.g.,, ere1 = e3 = —eqé€7.



In the family of real algebras:

The real numbers are the dependable breadwinner of the family. ...
The complex numbers are a slightly flashier but still respectable
younger brother.... The quaternions, being noncommutative, are
the eccentric cousin who is shunned at important family gatherings.
But the octonions are the crazy old uncle nobody lets out of
the attic: they are nonassociative.

John Baez
The Octonions



Nonassociative, but alternative.

O I1s not associative:



Nonassociative, but alternative.

But O is alternative:

(xx)y = x(xy),

(xy)x = x(¥x),

(yx)x = y(xx),
forany x,y € Q.

Just enough associativity!



The Cayley—Dickson construction

. Just as C = R?, we can define the octonions as pairs of
quaternions:

O = H?, where (a, b)(c,d) = (ac — db, da+ bc).

gl 2%-1 ) gy 7-7
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The Cayley—Dickson construction

. Just as C = R?, we can define the octonions as pairs of
quaternions:

O = H?, where (a, b)(c,d) = (ac — db, da+ bc).

» This works for any x-algebral! It’s called the
Cayley-Dickson construction.
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The Cayley—Dickson construction

. Just as C = R?, we can define the octonions as pairs of
quaternions:

O = H?, where (a, b)(c,d) = (ac — db, da+ bc).

» This works for any x-algebral! It’s called the
Cayley-Dickson construction.

* |terating the Cayley—Dickson construction gives:
R, C, H, O,S=07%S?,...

an infinite sequence of x-algebras!
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There are only four normed division algebras ...

A normed division algebra A is a possibly nonassociative real
algebra with unit, equipped with a positive-definite quadratic

form | -]%: A — R satisfying Aévj)fon
\(\[ ~0
xy| = |x]|yl], forall x,y € A. X =0 o

N =2
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There are only four normed division algebras ...

A normed division algebra A is a possibly nonassociative real
algebra with unit, equipped with a positive-definite quadratic
form |- |?: A — R satisfying

Ixy| = |x]||y]|, forall x,y € A.

Theorem (Hurwitz 1898)

There are only four normed division algebras:

R, C, H, and O.

The proof goes through Clifford algebras!

11



Clifford algebras: definition.

The Clifford algebra C/(V, g) on the real inner
= fn | = product space (V, g) is the real associative algebra

B
P =

ze” generated by V satisfying the Clifford relation:

v =g(v,v), forve V.

4

William Kingdon Clifford
(D. Chisholm)

* g Is nondegenerate, but not necessarily positive definite!
« The Clifford relation is equivalent to:

vw + wv = 2g(v,w), forv,we V.
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Clifford algebras: classification.

Write C/(p, q) for the Clifford algebra of R”-9.
Theorem
 As areal algebra, C/(p, q) = M,(K), n x n matrices /K;
« The size nis fixed by dim C¢(p, q) = 2P 9;
« The algebra of coefficients is fixed by the Clifford algebra

clock:
R
R&eER C
p—q
R times H
C H @ H



Clifford algebras: examples.

c((0,0) =L
cp (o) =(C S
cotoyz) =W Ji e

C0(93) = \F(l@l’/f o H'%l/j: . S

N
Cot0, ) = C@ D Mg(T)

Z?— — ‘22%2

9 (3,0)= Mw<@3 = <2(g9)
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Sketch of Hurwitz’s theorem

Let A be a normed division algebra, and define Im A = 1-+.
Claim: A is a module for the Clifford algebra C¢(Im A).

Example
When A = O, we define a homomorphism:

v.: C(ImO) — End(O)
xXelmO — X,

where x; : O — O denotes left multiplication, x;(y) = xy.

X, %, () = X(xy) = (XX Y

— _'..‘7(\1\/

2 (IO =1a]) —> ¢4(O)
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Sketch of Hurwitz’s theorem

Let A be a normed division algebra, and define Im A = 1-+.
Claim: A is a module for the Clifford algebra C¢(Im A).

Thus given A a normed division algebra, we get a Clifford
algebra C/(V) and a module M such that:

dmM=dmV + 1.
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Sketch of Hurwitz’s theorem

Let A be a normed division algebra, and define Im A = 1-+.
Claim: A is a module for the Clifford algebra C¢(Im A).

Thus given A a normed division algebra, we get a Clifford
algebra C/(V) and a module M such that:

dmM=dmV + 1.

That’s rare!

« C/(0,0) = R, and has module R;

* C/(0,1) = C, and has module C;

« C/(0,3) = H o H, and has modules H;, Hpg;

» C¢(0,7) = Mg(R) & Mg(R), and has modules R?, RS,
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Spinors




Geometry and the Clifford relation

Question
Why are Clifford algebras related to geometry?

The fundamental calculation

Let v € V be a unit vector. Compute viwv—: \ =

vwy T e
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The fundamental calculation

Proposition

The negative conjugate by a unit vector v is reflection in the
hyperplane v+

R,(w)=—vwv .
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Cartan’s theorem

Theorem (Cartan)

Any rotation g € SO(V) can be decomposed into an even
number of reflections:
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Spin groups

Define the spin group to be:

Spin(V) ={vivo---vo, € CUV) : g(V;, Vi) = £1, n€ N}.

There’s a 2-to-1 and onto homomorphism:

p: Spin(V) — SO(V)

V‘] V2 V2n —> RV1 RV2 "‘szn.
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Spin representations

* Spin( V) has more reps than SO(V)!
 Since Spin( V) C C/(V), C¢(V)-modules yield
representations.

- To identify irreps note that Spin(V) C C¢(V),, the even
part of the Z,-graded C/( V).

Simple modules of C/( V). <> spin reps of Spin( V).

20



Spin representations

Proposition
Cl(p,q)+ = Clp,q—1) = Cl(q,p—1).
Depending on dimension and signature, either:

* C/(V)L = MylK] = one spinrep S = K";
« CUV)s = My[K] ® My[K] = two spin reps:

S, 2K/, and S_ = K.

« Warning: Here K = R, C, H, an associative normed
division algebra.

« But for some special dimensions, K = O makes more
sense!
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Octonions as spinors




We know that C/(0,7) = Mg(R) & Mg(RR), with modules R?
and R%,.

Secretly R® = Q!
Recall the homomorphism:

v.: C(ImO) — End(QO)
XelmO — X,

where x; : O — O denotes left multiplication, x;(y) = xy.

This works since x; x;(S) = x(xs) = (xx)s = —|x|?s.

22



 In exactly the same way:

vr: C(ImO) — End(O)
XeElmO — Xxg,

where xg: O — O denotes right multiplication, xg(y) = yx.
 |n fact:

C/(0,7) = ((x.,xgr) € End(O) ® End(Q) : x € ImQ),
and in turn:
Spin(7) & {X1Lx2L Xop €End(Q) : X2 = —1,ne N} |
» This is the spin representation:
X11Xop -+ XonL(S) = X1 (Xa(- - (X2pS)---)), forseO.
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Spin(7): summary

In dimension 7:

 Vectors are imaginary octonions:
V =ImO.
« Spinors are octonions:
S =0.

 The action of Spin(7) on S is induced by left multiplication!
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c let V=0,S5, =0,and S_ = Q. Triality!

* Define
7+: VS, — S_

V & Sy — V&,

v VRS
VX S_

. CY(8) = <<VOL ‘g> € End(0Q?) : v € @>.

I 1
5 o
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« Multiplying pairs of unit vectors, we learn:
Spin(8) = ((v4 Vo, V4 Vo,) € End(0Q) & End(Q) : |vi|* = 1).
» These are the spin representations!
Vivo - S1 = Vi(WeSy), ViVo-S_ = vi(Was_).

for any generator v4v»> € Spin(8).
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Spin(8): summary

In dimension 8:

 Vectors and both kinds of spinors are octonions:
V:@, S_|_:@, S_:@

« Vectors act on S by left multiplication, and on S_ by
conjugate left multiplication, swapping S, and S_.

« This induces the two spin reps of Spin(8).
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