Octonions and spinors

John Huerta May 29th, 2023 – Banff International Research Station

1

CAMGSD Instituto Superior Técnico University of Lisbon

- 1. The octonions.
- 2. Clifford algebras and spinors.
- 3. Octonions as spinors.

Octonions

The normed division algebras

Theorem (Hurwitz 1898)

There are precisely four normed division algebras:

- \mathbb{R} , the real numbers;
- C, the complex numbers;
- \mathbb{H} , the quaternions;
- \mathbb{O} , the octonions.

Each of these is **normed**:

$$|xy| = |x||y|$$
, for all $x, y \in \mathbb{A}$.

The real and complex numbers

Eudoxus of Cnidus (A. Strick, MacTutor)

The real numbers:

$$\mathbb{R}=\text{span}_{\mathbb{R}}\{1\},$$

the "dependable breadwinner" of number systems.

Guiseppe Cardano (A. Strick, MacTutor)

The complex numbers:

$$\mathbb{C} = \operatorname{span}_{\mathbb{R}} \{1, i\}, \text{ where } i^2 = -1,$$

the flashy younger brother.

Quaternions and octonions

William Rowan Hamilton (A. Strick, MacTutor)

The quaternions:

$$\mathbb{H} = \operatorname{span}_{\mathbb{R}} \{ \mathbf{1}, \, i, \, j, \, k \},$$

where $i^2 = j^2 = k^2 = ijk = -1$; the eccentric cousin.

Mnemonic for multiplying quaternions:

E.g.,
$$ij = k = -ji$$
.

Quaternions and octonions

John T. Graves (MacTutor)

The octonions

 $\mathbb{O} = \operatorname{span}_{\mathbb{R}} \{ 1, e_1, e_2, e_3, e_4, e_5, e_6, e_7 \},\$

where
$$e_i^2 = -1$$
; the crazy old uncle!

Multiplying octonions with the **Fano plane**, $\mathbb{F}_2 \mathbb{P}^2$:

E.g., $e_7 e_1 = e_3 = -e_1 e_7$.

In the family of real algebras:

The real numbers are the dependable breadwinner of the family.... The complex numbers are a slightly flashier but still respectable younger brother.... The quaternions, being noncommutative, are the eccentric cousin who is shunned at important family gatherings. **But the octonions are the crazy old uncle nobody lets out of the attic: they are** *nonassociative***.**

> John Baez The Octonions

Nonassociative, but alternative.

 $\ensuremath{\mathbb{O}}$ is not associative:

$$(e_1e_2)e_3 = -e_1(e_2e_3).$$

$$e_1e_3$$

$$e_1e_5$$

$$-e_6$$

$$e_6$$

But \mathbb{O} is **alternative**:

$$(xx)y = x(xy),$$

$$(xy)x = x(yx),$$

$$(yx)x = y(xx),$$

for any $x, y \in \mathbb{O}$.

Just enough associativity!

The Cayley–Dickson construction

• Just as $\mathbb{C} = \mathbb{R}^2$, we can define the octonions as pairs of quaternions:

$$\mathbb{O} = \mathbb{H}^2, \text{ where } (a, b)(c, d) = (ac - d\overline{b}, da + b\overline{c}).$$

$$\mathcal{O}_{i} + \mathcal{O}_{i} \mathcal{O}_{j} \qquad \mathcal{O}_{i} = -1, \qquad \mathcal{O}_{i} + \mathcal{O}_{i} \mathcal{O}_{j} = \overline{\mathcal{O}_{i}}$$

The Cayley–Dickson construction

• Just as $\mathbb{C} = \mathbb{R}^2$, we can define the octonions as pairs of quaternions:

$$\mathbb{O} = \mathbb{H}^2$$
, where $(a, b)(c, d) = (ac - d\overline{b}, da + b\overline{c})$.

 This works for any *-algebra! It's called the Cayley–Dickson construction.

The Cayley–Dickson construction

• Just as $\mathbb{C} = \mathbb{R}^2$, we can define the octonions as pairs of quaternions:

 $\mathbb{O} = \mathbb{H}^2$, where $(a, b)(c, d) = (ac - d\overline{b}, da + b\overline{c})$.

- This works for any *-algebra! It's called the Cayley–Dickson construction.
- Iterating the Cayley–Dickson construction gives:

$$\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}, \mathbb{S} = \mathbb{O}^2, \mathbb{S}^2, \dots$$

an infinite sequence of *-algebras!

A normed division algebra \mathbb{A} is a possibly nonassociative real algebra with unit, equipped with a positive-definite quadratic divisionXY = 0 $\Rightarrow X = 0 or$ Y = 0form $|\cdot|^2 \colon \mathbb{A} \to \mathbb{R}$ satisfying

|xy| = |x||y|, for all $x, y \in \mathbb{A}$.

A normed division algebra \mathbb{A} is a possibly nonassociative real algebra with unit, equipped with a positive-definite quadratic form $|\cdot|^2 \colon \mathbb{A} \to \mathbb{R}$ satisfying

|xy| = |x||y|, for all $x, y \in \mathbb{A}$.

Theorem (Hurwitz 1898)

There are only four normed division algebras:

 $\mathbb{R},\,\mathbb{C},\,\mathbb{H},\text{ and }\mathbb{O}.$

The proof goes through Clifford algebras!

Clifford algebras: definition.

The **Clifford algebra** $C\ell(V, g)$ on the real inner product space (V, g) is the real associative algebra generated by *V* satisfying the **Clifford relation**:

$$v^2 = g(v, v), \text{ for } v \in V.$$

William Kingdon Clifford (D. Chisholm)

- g is nondegenerate, but not necessarily positive definite!
- The Clifford relation is equivalent to:

$$vw + wv = 2g(v, w), \text{ for } v, w \in V.$$

Write $C\ell(p,q)$ for the Clifford algebra of $\mathbb{R}^{p,q}$.

Theorem

- As a real algebra, $C\ell(p,q) \cong M_n(\mathbb{K})$, $n \times n$ matrices $/\mathbb{K}$;
- The size *n* is fixed by dim $C\ell(p,q) = 2^{p+q}$;
- The algebra of coefficients is fixed by the Clifford algebra clock:

Clifford algebras: examples.

 $Cl(0,0) = \mathbb{R} / \mathbb{R}$ $Cl(0,1) = \mathbb{R} / \mathbb{R} / \mathbb{R}$ $Cl(0,2) = \mathbb{H} / \mathbb{R} / \mathbb{R}$ K = ij $CL(0,3) = H \oplus H \sim H_{L_1} H_{2}$ $(q_1, q_2) \cdot s_L = q_1 s_L$ $CL(0,7) = M_8(\mathbb{R}) \oplus M_8(\mathbb{R})$ $2^7 = 2 \cdot 2^3 \times 2^3$ $Cl(8,0) = M_{16}(\mathbb{R}) = Cl(98)$

Let A be a normed division algebra, and define $Im A := 1^{\perp}$. Claim: A is a module for the Clifford algebra $C\ell(Im A)$. Example

When $\mathbb{A} = \mathbb{O}$, we define a homomorphism:

$$\gamma_L \colon \mathrm{C}\ell(\mathrm{Im}\,\mathbb{O}) \to \mathrm{End}(\mathbb{O})$$
$$x \in \mathrm{Im}\,\mathbb{O} \mapsto x_L,$$

where $x_L : \mathbb{O} \to \mathbb{O}$ denotes left multiplication, $x_L(y) = xy$.

$$\chi_{L}^{2} = -1 \times l^{2}$$

$$X_{L}X_{L}(Y) = X(XY) = (XX)Y$$

$$CL(IMO, -1-P^{2}) \longrightarrow EN(O)^{-1}$$
15

Let A be a normed division algebra, and define Im $A := 1^{\perp}$.

Claim: A is a module for the Clifford algebra $C\ell(Im A)$.

Thus given A a normed division algebra, we get a Clifford algebra $C\ell(V)$ and a module *M* such that:

 $\dim M = \dim V + 1.$

Let \mathbb{A} be a normed division algebra, and define $\text{Im } \mathbb{A} := 1^{\perp}$.

Claim: A is a module for the Clifford algebra $C\ell(Im A)$.

Thus given A a normed division algebra, we get a Clifford algebra $C\ell(V)$ and a module *M* such that:

 $\dim M = \dim V + 1.$

That's rare!

- $C\ell(0,0) = \mathbb{R}$, and has module \mathbb{R} ;
- $C\ell(0,1) = \mathbb{C}$, and has module \mathbb{C} ;
- $C\ell(0,3) = \mathbb{H} \oplus \mathbb{H}$, and has modules \mathbb{H}_L , \mathbb{H}_R ;
- $C\ell(0,7) = M_8(\mathbb{R}) \oplus M_8(\mathbb{R})$, and has modules \mathbb{R}^8_L , \mathbb{R}^8_R .

Spinors

Question

Why are Clifford algebras related to geometry?

The fundamental calculation

Let $v \in V$ be a unit vector. Compute vwv^{-1} :

$$v w v^{-1} \simeq - w w^{-1}$$

 $+ 2g(v_1 w) v^{-1}$

 $-VWV^{-1} = W - 2g(v, W)V$

1/2 = 1

Proposition

The negative conjugate by a unit vector v is reflection in the hyperplane v^{\perp} :

$$\mathbf{R}_{v}(w) = -vwv^{-1}$$

Theorem (Cartan)

Any rotation $g \in SO(V)$ can be decomposed into an even number of reflections:

$$g=\mathbf{R}_{v_1}\mathbf{R}_{v_2}\cdots\mathbf{R}_{v_{2n}}.$$

Define the **spin group** to be:

$$\operatorname{Spin}(V) = \{ v_1 v_2 \cdots v_{2n} \in \operatorname{C}\ell(V) : g(v_i, v_i) = \pm 1, n \in \mathbb{N} \}.$$

There's a 2-to-1 and onto homomorphism:

$$\rho \colon \operatorname{Spin}(V) \to \operatorname{SO}(V)$$
$$v_1 v_2 \cdots v_{2n} \mapsto \mathbf{R}_{v_1} \mathbf{R}_{v_2} \cdots \mathbf{R}_{v_{2n}}$$

Spin representations

- Spin(V) has more reps than SO(V)!
- Since Spin(V) ⊆ Cℓ(V), Cℓ(V)-modules yield representations.
- To identify irreps note that Spin(V) ⊆ Cℓ(V)₊, the even part of the Z₂-graded Cℓ(V).

Simple modules of $C\ell(V)_+ \leftrightarrow$ **spin reps** of Spin(V).

Proposition

$$\mathrm{C}\ell(p,q)_+\cong\mathrm{C}\ell(p,q-1)\cong\mathrm{C}\ell(q,p-1).$$

Depending on dimension and signature, either:

- $C\ell(V)_+ \cong M_n[\mathbb{K}] \Rightarrow$ one spin rep $S \cong \mathbb{K}^n$;
- $C\ell(V)_+ \cong M_n[\mathbb{K}] \oplus M_n[\mathbb{K}] \Rightarrow$ two spin reps:

$$S_+ \cong \mathbb{K}_L^n$$
, and $S_- \cong \mathbb{K}_R^n$.

- Warning: Here K = R, C, H, an associative normed division algebra.
- But for some special dimensions, $\mathbb{K}=\mathbb{O}$ makes more sense!

Octonions as spinors

- We know that $C\ell(0,7) \cong M_8(\mathbb{R}) \oplus M_8(\mathbb{R})$, with modules \mathbb{R}^8_L and \mathbb{R}^8_R .
- Secretly $\mathbb{R}^8 \cong \mathbb{O}!$
- Recall the homomorphism:

$$\gamma_L \colon \mathrm{C}\ell(\mathrm{Im}\,\mathbb{O}) \to \mathrm{End}(\mathbb{O})$$

 $x \in \mathrm{Im}\,\mathbb{O} \mapsto x_L,$

where $x_L : \mathbb{O} \to \mathbb{O}$ denotes left multiplication, $x_L(y) = xy$.

• This works since $x_L x_L(s) = x(xs) = (xx)s = -|x|^2s$.

Spin(7)

• In exactly the same way:

$$\gamma_R \colon \mathrm{C}\ell(\mathrm{Im}\,\mathbb{O}) \to \mathrm{End}(\mathbb{O})$$

 $x \in \mathrm{Im}\,\mathbb{O} \mapsto x_R,$

where $x_R : \mathbb{O} \to \mathbb{O}$ denotes *right* multiplication, $x_R(y) = yx$.

• In fact:

 $\mathrm{C}\ell(0,7)\cong \langle (x_L,x_R)\in\mathrm{End}(\mathbb{O})\oplus\mathrm{End}(\mathbb{O})\,:\,x\in\mathrm{Im}\,\mathbb{O}
angle\,,$

and in turn:

$$\operatorname{Spin}(7) \cong \left\{ x_{1L} x_{2L} \cdots x_{2nL} \in \operatorname{End}(\mathbb{O}) : x_i^2 = -1, n \in \mathbb{N} \right\}.$$

• This is the spin representation:

$$x_{1L}x_{2L}\cdots x_{2nL}(s)=x_1(x_2(\cdots(x_{2n}s)\cdots)),$$
 for $s\in\mathbb{O}.$

In dimension 7:

• Vectors are imaginary octonions:

 $V = \operatorname{Im} \mathbb{O}.$

• Spinors are octonions:

 $S = \mathbb{O}.$

• The action of Spin(7) on *S* is induced by left multiplication!

Spin(8)

- Let $V = \mathbb{O}$, $S_+ = \mathbb{O}$, and $S_- = \mathbb{O}$. Triality!
- Define

$$\begin{array}{rccc} \gamma_{+} \colon V \otimes S_{+} & \to & S_{-} \\ & & V \otimes s_{+} & \mapsto & Vs_{+}. \end{array} \\ & \gamma_{-} \colon V \otimes S_{-} & \to & S_{+} \\ & & v \otimes s_{-} & \mapsto & \overline{V}s_{-}. \end{array}$$
$$\bullet & \operatorname{C}\ell(8) \cong \left\langle \begin{pmatrix} 0 & v_{L} \\ \overline{v}_{L} & 0 \end{pmatrix} \in \operatorname{End}(\mathbb{O}^{2}) \, \colon v \in \mathbb{O} \right\rangle. \end{array}$$

• Multiplying pairs of unit vectors, we learn:

 $\operatorname{Spin}(8) \cong \langle (v_{1L}\overline{v_2}_L, \overline{v_1}_L v_{2L}) \in \operatorname{End}(\mathbb{O}) \oplus \operatorname{End}(\mathbb{O}) : |v_i|^2 = 1 \rangle.$

• These are the spin representations!

$$V_1V_2 \cdot S_+ = \overline{V_1}(V_2S_+), \quad V_1V_2 \cdot S_- = V_1(\overline{V_2}S_-).$$

for any generator $v_1 v_2 \in \text{Spin}(8)$.

In dimension 8:

• Vectors and both kinds of spinors are octonions:

$$V = \mathbb{O}, \quad S_+ = \mathbb{O}, \quad S_- = \mathbb{O}.$$

- Vectors act on S_+ by left multiplication, and on S_- by conjugate left multiplication, swapping S_+ and S_- .
- This induces the two spin reps of Spin(8).

