Kinetic Theory for Hamilton-Jacobi Equation

Fraydoun Rezakhanlou

Department of Mathematics
UC Berkeley

Motivation

Hamilton-Jacobi PDE
In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location x and time t changes with a rate that depends on (x, t), and the inclination of the interface at that location.

Hamilton-Jacobi PDE:

$$
u_{t}=H\left(x, t, u_{x}\right), \quad u(x, 0)=g(x) .
$$

We may also study $\rho=u_{x}$ (almost equivalently)
(In discrete setting some of the variables x, t or u are discrete; examples SEP, HAD, etc.)
H is often random (hence u is random), and we are interested
in various scaling limits of solutions.

Motivation

Hamilton-Jacobi PDE

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location x and time t changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $u: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$
u_{t}=H\left(x, t, u_{x}\right), \quad u(x, 0)=g(x) .
$$

We may also study $\rho=u_{x}$ (almost equivalently)
(In discrete setting some of the variables x, t or u are discrete; examples SEP, HAD, etc.)

Motivation

Hamilton-Jacobi PDE

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location x and time t changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $u: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$
u_{t}=H\left(x, t, u_{x}\right), \quad u(x, 0)=g(x) .
$$

We may also study $\rho=u_{x}$ (almost equivalently)

$$
\rho_{t}=(H(x, t, \rho))_{x} .
$$

(In discrete setting some of the variables x, t or u are discrete; examples SEP, HAD, etc.)
H is often random (hence u is random), and we are interested

Motivation

Hamilton-Jacobi PDE

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location x and time t changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $u: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$
u_{t}=H\left(x, t, u_{x}\right), \quad u(x, 0)=g(x) .
$$

We may also study $\rho=u_{x}$ (almost equivalently)

$$
\rho_{t}=(H(x, t, \rho))_{x} .
$$

(In discrete setting some of the variables x, t or u are discrete; examples SEP, HAD, etc.)
H is often random (hence u is random), and we are interested

Motivation

Hamilton-Jacobi PDE

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location x and time t changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $u: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$
u_{t}=H\left(x, t, u_{x}\right), \quad u(x, 0)=g(x) .
$$

We may also study $\rho=u_{x}$ (almost equivalently)

$$
\rho_{t}=(H(x, t, \rho))_{x} .
$$

(In discrete setting some of the variables x, t or u are discrete; examples SEP, HAD, etc.)
H is often random (hence u is random), and we are interested in various scaling limits of solutions.

Examples $H(x, t, p)=H_{0}(p)-V(x, t)$ where $H_{0}(p)$ is convex, and formally

$$
V(x, t)=\sum_{i \in I} \pi\left(x=x_{i}\right) \delta_{s_{i}}(t),
$$

where $\omega=\left\{\left(x_{i}, s_{i}\right): i \in I\right\}$ is a Poisson point process.
When $H_{0}(p)=\frac{1}{2} p^{2}$, and $d=1$, this HJE was studied by Bakhtin, Cator, Khanin (2014) (existence of invariant
measures).
When $H_{0}(p)=|p|$, the model is equivalent to Polynuclear
Growth, and is exactly solvable.

Examples
$H(x, t, p)=H_{0}(p)-V(x, t)$ where $H_{0}(p)$ is convex, and formally

$$
V(x, t)=\sum_{i \in 1} \pi\left(x=x_{i}\right) \delta_{s_{i}}(t),
$$

where $\omega=\left\{\left(x_{i}, s_{i}\right): i \in I\right\}$ is a Poisson point process. When $H_{0}(p)=\frac{1}{2} p^{2}$, and $d=1$, this HJE was studied by Bakhtin, Cator, Khanin (2014) (existence of invariant measures).

Examples
$H(x, t, p)=H_{0}(p)-V(x, t)$ where $H_{0}(p)$ is convex, and formally

$$
V(x, t)=\sum_{i \in 1} \pi\left(x=x_{i}\right) \delta_{s_{i}}(t),
$$

where $\omega=\left\{\left(x_{i}, s_{i}\right): i \in I\right\}$ is a Poisson point process.
When $H_{0}(p)=\frac{1}{2} p^{2}$, and $d=1$, this HJE was studied by
Bakhtin, Cator, Khanin (2014) (existence of invariant measures).
When $H_{0}(p)=|p|$, the model is equivalent to Polynuclear Growth, and is exactly solvable.

Level sets of $u(x, t)=1,2,3.4$ when $u(x, 0)=-\infty 11(x \neq 0)$.

A Natural Question/Strategy
Write Φ_{t} for the the flow of HJE (in other words
$\left.u(\cdot, t)=\left(\Phi_{t} g\right)(\cdot)\right)$.
Select g (or ∇g) according to a (reasonable) probability
measure μ^{0}. Let us write μ^{t} for the law of $u(\cdot, t)$ (or $\rho(\cdot, t)$) at
time $t: \mu^{t}=\Phi_{t}^{*} \mu^{0}$.
Question: Can we find a nice/tractable/explicit evolution
equation for μ^{t} ?
More Realistic Question: Can we find a family \mathcal{M} of measures that is invariant under ϕ_{t}^{*} ? Describe Φ_{t}^{*} on \mathcal{M}.
This talk: We describe an invariant family
$\mathcal{M}=\{\nu(f): f$ kernel $\}$ with $\Phi_{t}^{*} \nu(f)=\nu\left(\Psi_{t}(f)\right)$, and we describe
the evolution $\psi_{t}(f)$ when either $H(x, t, p), d=1$, or
$H(x, t, p)=H(p)$ and g is piecewise linear convex function.
[Kaspar-FR $(2016,2019)$ after a conjecture of
Menon-Srinivasan (2010), FR-Ouaki (2022, 2023), FR (2023)]

A Natural Question/Strategy
Write Φ_{t} for the the flow of HJE (in other words
$\left.u(\cdot, t)=\left(\Phi_{t} g\right)(\cdot)\right)$.
Select g (or ∇g) according to a (reasonable) probability measure μ^{0}.

A Natural Question/Strategy
Write Φ_{t} for the the flow of HJE (in other words
$\left.u(\cdot, t)=\left(\Phi_{t} g\right)(\cdot)\right)$.
Select g (or ∇g) according to a (reasonable) probability measure μ^{0}. Let us write μ^{t} for the law of $u(\cdot, t)$ (or $\rho(\cdot, t)$) at time $t: \mu^{t}=\Phi_{t}^{*} \mu^{0}$.

A Natural Question/Strategy

Write Φ_{t} for the the flow of HJE (in other words
$\left.u(\cdot, t)=\left(\Phi_{t} g\right)(\cdot)\right)$.
Select g (or ∇g) according to a (reasonable) probability measure μ^{0}. Let us write μ^{t} for the law of $u(\cdot, t)$ (or $\rho(\cdot, t)$) at time $t: \mu^{t}=\Phi_{t}^{*} \mu^{0}$.
Question: Can we find a nice/tractable/explicit evolution equation for μ^{t} ?

A Natural Question/Strategy

Write Φ_{t} for the the flow of HJE (in other words
$\left.u(\cdot, t)=\left(\Phi_{t} g\right)(\cdot)\right)$.
Select g (or ∇g) according to a (reasonable) probability measure μ^{0}. Let us write μ^{t} for the law of $u(\cdot, t)$ (or $\rho(\cdot, t)$) at time t : $\mu^{t}=\Phi_{t}^{*} \mu^{0}$.
Question: Can we find a nice/tractable/explicit evolution equation for μ^{t} ?
More Realistic Question: Can we find a family \mathcal{M} of measures that is invariant under Φ_{t}^{*} ? Describe Φ_{t}^{*} on \mathcal{M}.

A Natural Question/Strategy

Write Φ_{t} for the the flow of HJE (in other words
$\left.u(\cdot, t)=\left(\Phi_{t} g\right)(\cdot)\right)$.
Select g (or ∇g) according to a (reasonable) probability measure μ^{0}. Let us write μ^{t} for the law of $u(\cdot, t)$ (or $\left.\rho(\cdot, t)\right)$ at time $t: \mu^{t}=\Phi_{t}^{*} \mu^{0}$.
Question: Can we find a nice/tractable/explicit evolution equation for μ^{t} ?
More Realistic Question: Can we find a family \mathcal{M} of measures that is invariant under Φ_{t}^{*} ? Describe Φ_{t}^{*} on \mathcal{M}.
This talk: We describe an invariant family $\mathcal{M}=\{\nu(f): f$ kernel $\}$ with $\Phi_{t}^{*} \nu(f)=\nu\left(\Psi_{t}(f)\right)$, and we describe the evolution $\Psi_{t}(f)$ when either $H(x, t, p), d=1$, or $H(x, t, p)=H(p)$ and g is piecewise linear convex function. [Kaspar-FR $(2016,2019)$ after a conjecture of Menon-Srinivasan (2010), FR-Ouaki (2022, 2023), FR (2023)]

Assumption: General $H, d=1$

Given $z=(y, s) \in \mathbb{R}^{d+1}$, by a fundamental solution $W(\cdot ; z): \mathbb{R} \times(s, \infty) \rightarrow \mathbb{R}$ associated with z we mean

$$
W(x, t ; z)=\sup \int_{s}^{t} L(\xi(\theta), \theta, \dot{\xi}(\theta)) d \theta
$$

where the supremum is over

$$
\xi \in C^{1}\left([s, i] ; \mathbb{R}^{d}\right), \xi(s)=y, \xi(t)=x .
$$

and L is the Legendre transform of H in the p-variable:
$L(x, t, v)=\inf _{p}(p \cdot v+H(x, t, p)), \quad H(x, t, p)=\sup _{v}(L(x, t, v)-p \cdot v)$.
We also set $M(x, t ; z)=W_{x}(x, t ; z)$ for the x-derivative of W.

Assumption: General $H, d=1$

Given $z=(y, s) \in \mathbb{R}^{d+1}$, by a fundamental solution $W(\cdot ; z): \mathbb{R} \times(s, \infty) \rightarrow \mathbb{R}$ associated with z we mean

$$
W(x, t ; z)=\sup \int_{s}^{t} L(\xi(\theta), \theta, \dot{\xi}(\theta)) d \theta
$$

where the supremum is over

$$
\xi \in C^{1}\left([s, t] ; \mathbb{R}^{d}\right), \xi(s)=y, \xi(t)=x .
$$

and L is the Legendre transform of H in the p-variable:
$L(x, t, v)=\inf _{p}(p \cdot v+H(x, t, p)), \quad H(x, t, p)=\sup _{v}(L(x, t, v)-p \cdot v)$.
We also set $M(x, t ; z)=W_{x}(x, t ; z)$ for the x-derivative of W.

Assumption: General $H, d=1$

A solution u, subject to an initial condition $u(x, s)=u^{0}(x)$, has a representation

$$
u(x, t)=\sup _{y}\left(u^{0}(y)+W(x, t ; y, s)\right), \quad t \geq s
$$

We search for a solution of the form

$$
u(x, t)=\sup _{y \in I}(g(y)+W(x, t ; y, s)), \quad t \geq s
$$

with I a discrete set. Alternatively

$$
\rho(x, t)=W_{x}(x, t ; y(x, i), s)=M(x, t ; y(x, t), s),
$$

where $y(x, t)$ takes value in the set I.

Assumption: General $H, d=1$

A solution u, subject to an initial condition $u(x, s)=u^{0}(x)$, has a representation

$$
u(x, t)=\sup _{y}\left(u^{0}(y)+W(x, t ; y, s)\right), \quad t \geq s
$$

We search for a solution of the form

$$
u(x, t)=\sup (g(y)+W(x, t ; y, s))
$$

with I a discrete set. Alternatively

$$
\rho(x, t)=W_{x}(x, t ; y(x, t), s)=M(x, t ; y(x, t), s),
$$

where $y(x, t)$ takes value in the set I.

Assumption: General $H, d=1$

A solution u, subject to an initial condition $u(x, s)=u^{0}(x)$, has a representation

$$
u(x, t)=\sup _{y}\left(u^{0}(y)+W(x, t ; y, s)\right), \quad t \geq s
$$

We search for a solution of the form

$$
u(x, t)=\sup _{y \in I}(g(y)+W(x, t ; y, s)), \quad t \geq s
$$

with I a discrete set. Alternatively

$$
\rho(x, t)=W_{x}(x, t ; y(x, t), s)=M(x, t ; y(x, t), s),
$$

where $y(x, t)$ takes value in the set l.

Assumption: General $H, d=1$

A solution u, subject to an initial condition $u(x, s)=u^{0}(x)$, has a representation

$$
u(x, t)=\sup _{y}\left(u^{0}(y)+W(x, t ; y, s)\right), \quad t \geq s
$$

We search for a solution of the form

$$
u(x, t)=\sup _{y \in I}(g(y)+W(x, t ; y, s)), \quad t \geq s
$$

with I a discrete set. Alternatively

$$
\rho(x, t)=W_{x}(x, t ; y(x, t), s)=M(x, t ; y(x, t), s)
$$

where $y(x, t)$ takes value in the set I.

Assumption: A Theorem (General $H, d=1$)

If $\rho\left(x, t_{0}\right)=M\left(x, t_{;} y^{0}(x), s\right.$, for some $t_{0}>s$, and for a Markov jump process y^{0} associated with $g\left(x, s, y_{-}, y_{+}\right)$, then for $t>t_{0}$, we have $\rho(x, t)=M(x, t ; y(x, t))$, where $y(\cdot, t)$ is a Markov jump process associated with $g\left(x, t, y_{-}, y_{+}\right)$. Assume that the kernel $g(x, t, y, y)$ satisfies the following (kinctic) equation:

$$
g_{t}-(\hat{v} g)_{x}=Q(g)=Q^{+}(g)-Q^{-}(g)=Q^{+}(g)-g L(g),
$$

where

$$
\begin{gathered}
v\left(x, t, y_{-}, y_{+}\right)=\frac{H\left(x, t, M\left(x, t ; y_{+}, s\right)\right)-H\left(x, t, M\left(x, t ; y_{-}, s\right)\right)}{M\left(x, t ; y_{+}, s\right)-M\left(x, t ; y_{-}, s\right)}, \\
Q^{+}(g)=\int\left(v\left(y_{*}, y_{+}\right)-v\left(y_{-}, y_{*}\right)\right) g\left(y_{-}, y_{*}\right) g\left(y_{*}, y_{+}\right) d y_{*}, \\
L(g)=\left(A(v g)\left(y_{+}\right)-A(v g)(y-)\right)-v\left(y_{-}, y_{+}\right)\left(A(g)\left(y_{+}\right)-A(g)\left(y_{-}\right)\right) .
\end{gathered}
$$

Here we have not displayed the dependence of our functions on (x, t) for a compact notation, and

$$
A(h)(y)=\int_{y}^{\infty} h\left(y, y_{*}\right) d y_{*},
$$

Assumption: A Theorem (General $H, d=1$)

If $\rho\left(x, t_{0}\right)=M\left(x, t ; y^{0}(x), s\right.$, for some $t_{0}>s$, and for a Markov jump process y^{0} associated with $g\left(x, s, y_{-}, y_{+}\right)$, then for $t>t_{0}$, we have $\rho(x, t)=M(x, t ; y(x, t))$, where $y(\cdot, t)$ is a Markov jump process associated with $g\left(x, t, y_{-}, y_{+}\right)$. Assume that the kernel $g\left(x, t, y_{-}, y_{+}\right)$satisfies the following (kinetic) equation:
where

\square
\square
\square

Assumption: A Theorem (General $H, d=1$)

If $\rho\left(x, t_{0}\right)=M\left(x, t ; y^{0}(x), s\right.$, for some $t_{0}>s$, and for a Markov jump process y^{0} associated with $g\left(x, s, y_{-}, y_{+}\right)$, then for $t>t_{0}$, we have $\rho(x, t)=M(x, t ; y(x, t))$, where $y(\cdot, t)$ is a Markov jump process associated with $g\left(x, t, y_{-}, y_{+}\right)$. Assume that the kernel $g\left(x, t, y_{-}, y_{+}\right)$satisfies the following (kinetic) equation:

$$
g_{t}-(\hat{v} g)_{x}=Q(g)=Q^{+}(g)-Q^{-}(g)=Q^{+}(g)-g L(g),
$$

where

\square
\square

Assumption: A Theorem (General $H, d=1$)

If $\rho\left(x, t_{0}\right)=M\left(x, t ; y^{0}(x), s\right.$, for some $t_{0}>s$, and for a Markov jump process y^{0} associated with $g\left(x, s, y_{-}, y_{+}\right)$, then for $t>t_{0}$, we have $\rho(x, t)=M(x, t ; y(x, t))$, where $y(\cdot, t)$ is a Markov jump process associated with $g\left(x, t, y_{-}, y_{+}\right)$. Assume that the kernel $g\left(x, t, y_{-}, y_{+}\right)$satisfies the following (kinetic) equation:

$$
g_{t}-(\hat{v} g)_{x}=Q(g)=Q^{+}(g)-Q^{-}(g)=Q^{+}(g)-g L(g),
$$

where

$$
v\left(x, t, y_{-}, y_{+}\right)=\frac{H\left(x, t, M\left(x, t ; y_{+}, s\right)\right)-H\left(x, t, M\left(x, t ; y_{-}, s\right)\right)}{M\left(x, t ; y_{+}, s\right)-M\left(x, t ; y_{-}, s\right)},
$$

Assumption: A Theorem (General $H, d=1$)

If $\rho\left(x, t_{0}\right)=M\left(x, t ; y^{0}(x), s\right.$, for some $t_{0}>s$, and for a Markov jump process y^{0} associated with $g\left(x, s, y_{-}, y_{+}\right)$, then for $t>t_{0}$, we have $\rho(x, t)=M(x, t ; y(x, t))$, where $y(\cdot, t)$ is a Markov jump process associated with $g\left(x, t, y_{-}, y_{+}\right)$. Assume that the kernel $g\left(x, t, y_{-}, y_{+}\right)$satisfies the following (kinetic) equation:

$$
g_{t}-(\hat{v} g)_{x}=Q(g)=Q^{+}(g)-Q^{-}(g)=Q^{+}(g)-g L(g)
$$

where

$$
\begin{gathered}
v\left(x, t, y_{-}, y_{+}\right)=\frac{H\left(x, t, M\left(x, t ; y_{+}, s\right)\right)-H\left(x, t, M\left(x, t ; y_{-}, s\right)\right)}{M\left(x, t ; y_{+}, s\right)-M\left(x, t ; y_{-}, s\right)} \\
Q^{+}(g)=\int\left(v\left(y_{*}, y_{+}\right)-v\left(y_{-}, y_{*}\right)\right) g\left(y_{-}, y_{*}\right) g\left(y_{*}, y_{+}\right) d y_{*} \\
L(g)=\left(A(v g)\left(y_{+}\right)-A(v g)\left(y_{-}\right)\right)-v\left(y_{-}, y_{+}\right)\left(A(g)\left(y_{+}\right)-A(g)\left(y_{-}\right)\right)
\end{gathered}
$$

Assumption: A Theorem (General $H, d=1$)

If $\rho\left(x, t_{0}\right)=M\left(x, t ; y^{0}(x), s\right.$, for some $t_{0}>s$, and for a Markov jump process y^{0} associated with $g\left(x, s, y_{-}, y_{+}\right)$, then for $t>t_{0}$, we have $\rho(x, t)=M(x, t ; y(x, t))$, where $y(\cdot, t)$ is a Markov jump process associated with $g\left(x, t, y_{-}, y_{+}\right)$. Assume that the kernel $g\left(x, t, y_{-}, y_{+}\right)$satisfies the following (kinetic) equation:

$$
g_{t}-(\hat{v} g)_{x}=Q(g)=Q^{+}(g)-Q^{-}(g)=Q^{+}(g)-g L(g)
$$

where

$$
\begin{gathered}
v\left(x, t, y_{-}, y_{+}\right)=\frac{H\left(x, t, M\left(x, t ; y_{+}, s\right)\right)-H\left(x, t, M\left(x, t ; y_{-}, s\right)\right)}{M\left(x, t ; y_{+}, s\right)-M\left(x, t ; y_{-}, s\right)} \\
Q^{+}(g)=\int\left(v\left(y_{*}, y_{+}\right)-v\left(y_{-}, y_{*}\right)\right) g\left(y_{-}, y_{*}\right) g\left(y_{*}, y_{+}\right) d y_{*} \\
L(g)=\left(A(v g)\left(y_{+}\right)-A(v g)\left(y_{-}\right)\right)-v\left(y_{-}, y_{+}\right)\left(A(g)\left(y_{+}\right)-A(g)\left(y_{-}\right)\right)
\end{gathered}
$$

Here we have not displayed the dependence of our functions on (x, t) for a compact notation, and

$$
A(h)(y)=\int_{y}^{\infty} h\left(y, y_{*}\right) d y_{*} .
$$

Assumption: H and g Convex

$g(x)=\sup (x \cdot \rho-h(\rho)) \Longrightarrow u(x, t)=\sup (x \cdot \rho-h(\rho)+t H(\rho))$.

Observe that u is convex in (x, t).
Write \mathcal{C}_{0} for the set of piecewise linear convex functions.
$g(x)=\sup _{\rho \in P}(x \cdot \rho-h(\rho)) \Longrightarrow u(x, t)=\sup _{\rho \in P}(x \cdot \rho-h(\rho)+t H(\rho))$,
for a discrete set P. There would be a minimal set $P(t)$ such that

$$
\begin{gathered}
u(x, t)=\sup _{\rho \in P(t)}(x \cdot \rho-h(\rho)+t H(\rho)), \\
s<t \Longrightarrow P(t) \subseteq P(s)
\end{gathered}
$$

Assumption: H and g Convex

$g(x)=\sup _{\rho}(x \cdot \rho-h(\rho)) \Longrightarrow u(x, t)=\sup _{\rho}(x \cdot \rho-h(\rho)+t H(\rho))$.
Observe that u is convex in (x, t).
Write \mathcal{C}_{0} for the set of piecewise linear convex functions.
$g(x)=\sup _{\rho \in \rho}(x \cdot \rho-h(\rho)) \Longrightarrow u(x, t)=\sup _{\rho \in P}(x \cdot \rho-h(\rho)+t H(\rho))$,
for a discrete set P. There would be a minimal set $P(t)$ such that

$$
\begin{gathered}
u(x, t)=\sup _{\rho \in P(t)}(x \cdot \rho-h(\rho)+t H(\rho)), \\
s<t \Longrightarrow P(t) \subseteq P(s)
\end{gathered}
$$

Assumption: H and g Convex

$$
g(x)=\sup _{\rho}(x \cdot \rho-h(\rho)) \Longrightarrow u(x, t)=\sup _{\rho}(x \cdot \rho-h(\rho)+t H(\rho)) .
$$

Observe that u is convex in (x, t).
Write \mathcal{C}_{0} for the set of piecewise linear convex functions.

for a discrete set P. There would be a minimal set $P(t)$ such that

$$
u(x, t)=\sup _{\rho \in P(t)}(x \cdot \rho-h(\rho)+t H(\rho))
$$

$$
s<t \Longrightarrow P(t) \subseteq P(s)
$$

Assumption: H and g Convex

$$
g(x)=\sup _{\rho}(x \cdot \rho-h(\rho)) \Longrightarrow u(x, t)=\sup _{\rho}(x \cdot \rho-h(\rho)+t H(\rho)) .
$$

Observe that u is convex in (x, t).
Write \mathcal{C}_{0} for the set of piecewise linear convex functions.

for a discrete set P. There would be a minimal set $P(t)$ such that

$$
u(x, t)=\sup _{\rho \in P(t)}(x \cdot \rho-h(\rho)+t H(\rho))
$$

$$
s<t \Longrightarrow P(t) \subseteq P(s)
$$

Assumption: H and g Convex

$$
g(x)=\sup _{\rho}(x \cdot \rho-h(\rho)) \Longrightarrow u(x, t)=\sup _{\rho}(x \cdot \rho-h(\rho)+t H(\rho)) .
$$

Observe that u is convex in (x, t). Write \mathcal{C}_{0} for the set of piecewise linear convex functions.

$$
g(x)=\sup _{\rho \in P}(x \cdot \rho-h(\rho)) \Longrightarrow u(x, t)=\sup _{\rho \in P}(x \cdot \rho-h(\rho)+t H(\rho))
$$

for a discrete set P. There would be a minimal set $P(t)$ such that

$$
u(x, t)=\sup _{\rho \in P(t)}(x \cdot \rho-h(\rho)+t H(\rho))
$$

Assumption: H and g Convex

$$
g(x)=\sup _{\rho}(x \cdot \rho-h(\rho)) \Longrightarrow u(x, t)=\sup _{\rho}(x \cdot \rho-h(\rho)+t H(\rho)) .
$$

Observe that u is convex in (x, t).
Write \mathcal{C}_{0} for the set of piecewise linear convex functions.

$$
g(x)=\sup _{\rho \in P}(x \cdot \rho-h(\rho)) \Longrightarrow u(x, t)=\sup _{\rho \in P}(x \cdot \rho-h(\rho)+t H(\rho))
$$

for a discrete set P. There would be a minimal set $P(t)$ such that

$$
\begin{gathered}
u(x, t)=\sup _{\rho \in P(t)}(x \cdot \rho-h(\rho)+t H(\rho)), \\
s<t \Longrightarrow P(t) \subseteq P(s)
\end{gathered}
$$

Piecewise linear convex g
P discrete, $h: P \rightarrow \mathbb{R}$,

$$
g(x)=\sup _{\rho \in P}(x \cdot \rho-h(\rho))
$$

There exists a tessellation $\{C(\rho): \rho \in P\}, C(\rho)$ convex polytope/polyhydron such that

$$
g(x)=\sum_{\rho \in P} \Pi(x \in C(\rho))(x \cdot p-h(\rho))
$$

$$
\nabla g(x)=\sum_{\rho \in P} \mathbb{H}(x \in C(\rho)) \rho
$$

Similarly, there exists a tessellation $\{\hat{C}(x): x \in \hat{P}\}, \hat{C}(x)$ convex polytope/polyhydron such that

$$
g^{*}(\rho)=\sum_{x \in \hat{P}} \Pi(\rho \in \hat{C}(x))(x \cdot \rho-g(x))
$$

$$
\nabla g^{*}(\rho)=\sum_{x \in \hat{P}} \pi(\rho \in \hat{C}(x)) x
$$

Piecewise linear convex g

P discrete, $h: P \rightarrow \mathbb{R}$,

$$
g(x)=\sup _{\rho \in P}(x \cdot \rho-h(\rho))
$$

There exists a tessellation $\{C(\rho): \rho \in P\}, C(\rho)$ convex polytope/polyhydron such that

$$
g(x)=\sum_{\rho \in P} \mathbb{1}(x \in C(\rho))(x \cdot \rho-h(\rho))
$$

Similarly, there exists a tessellation $\{\hat{C}(x): x \in \hat{P}\}, \hat{C}(x)$ convex polytope/polyhydron such that

Piecewise linear convex g

P discrete, $h: P \rightarrow \mathbb{R}$,

$$
g(x)=\sup _{\rho \in P}(x \cdot \rho-h(\rho))
$$

There exists a tessellation $\{C(\rho): \rho \in P\}, C(\rho)$ convex polytope/polyhydron such that

$$
\begin{gathered}
g(x)=\sum_{\rho \in P} \mathbb{H}(x \in C(\rho))(x \cdot \rho-h(\rho)) \\
\nabla g(x)=\sum_{\rho \in P} \mathbb{H}(x \in C(\rho)) \rho .
\end{gathered}
$$

Similarly, there exists a tessellation $\{\hat{C}(x): x \in \hat{P}\}, \hat{C}(x)$ convex polytope/polyhydron such that

Piecewise linear convex g

P discrete, $h: P \rightarrow \mathbb{R}$,

$$
g(x)=\sup _{\rho \in P}(x \cdot \rho-h(\rho))
$$

There exists a tessellation $\{C(\rho): \rho \in P\}, C(\rho)$ convex polytope/polyhydron such that

$$
\begin{gathered}
g(x)=\sum_{\rho \in P} \mathbb{1}(x \in C(\rho))(x \cdot \rho-h(\rho)) \\
\nabla g(x)=\sum_{\rho \in P} \mathbb{1}(x \in C(\rho)) \rho .
\end{gathered}
$$

Similarly, there exists a tessellation $\{\hat{C}(x): x \in \hat{P}\}, \hat{C}(x)$ convex polytope/polyhydron such that

$$
g^{*}(\rho)=\sum_{x \in \hat{P}} \Pi(\rho \in \hat{C}(x))(x \cdot \rho-g(x))
$$

Piecewise linear convex g

P discrete, $h: P \rightarrow \mathbb{R}$,

$$
g(x)=\sup _{\rho \in P}(x \cdot \rho-h(\rho))
$$

There exists a tessellation $\{C(\rho): \rho \in P\}, C(\rho)$ convex polytope/polyhydron such that

$$
\begin{gathered}
g(x)=\sum_{\rho \in P} \mathbb{1}(x \in C(\rho))(x \cdot \rho-h(\rho)) \\
\nabla g(x)=\sum_{\rho \in P} \mathbb{1}(x \in C(\rho)) \rho .
\end{gathered}
$$

Similarly, there exists a tessellation $\{\hat{C}(x): x \in \hat{P}\}, \hat{C}(x)$ convex polytope/polyhydron such that

$$
\begin{gathered}
g^{*}(\rho)=\sum_{x \in \hat{P}} \mathbb{\Pi}(\rho \in \hat{C}(x))(x \cdot \rho-g(x)) \\
\nabla g^{*}(\rho)=\sum_{x \in \hat{P}} \mathbb{\Pi}(\rho \in \hat{C}(x)) x
\end{gathered}
$$

For generic P, we have a graph of degree $d+1$; Its dual is a $h(\rho)=|\rho|^{2} / 2$: Voronoi tessellation

For generic P, we have a graph of degree $d+1$; Its dual is a triangulation (weighted Delaunay triangulation).
$h(\rho)=|\rho|^{2} / 2$: Voronoi tessellation

For generic P, we have a graph of degree $d+1$; Its dual is a triangulation (weighted Delaunay triangulation). $h(\rho)=|\rho|^{2} / 2$: Voronoi tessellation

Secondary Polytope

Gelfand-Kapranov-Zelevinsky:

1. The vertices σ_{T} of $\Sigma(P)$ correspond to regular/coherent
triangulations T .
2. When there is an edge between σ_{T} and $\sigma_{T^{\prime}}$?

When σ_{T} and $\sigma_{T^{\prime}}$ differ on a subtriagulation: The discrepancy
$\sigma_{\mathbf{S}}$ and $\sigma_{\mathbf{S}^{\prime}}$ are the two possible triangulations of a circuit.

Secondary Polytope

Gelfand-Kapranov-Zelevinsky:

1. The vertices $\sigma_{\boldsymbol{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations \mathbf{T}.
2. When there is an edge between σ т and σT^{\prime} ?

When $\sigma_{\mathbf{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$ differ on a subtriagulation: The discrepancy
σ_{s} and $\sigma_{s^{\prime}}$ are the two possible triangulations of a circuit.

Secondary Polytope

Gelfand-Kapranov-Zelevinsky:

1. The vertices $\sigma_{\boldsymbol{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations \mathbf{T}.
2. When there is an edge between $\sigma_{\boldsymbol{T}}$ and $\sigma_{\boldsymbol{T}^{\prime}}$?

When σ_{T} and $\sigma_{T^{\prime}}$ differ on a subtriagulation: The discrepancy
σ_{S} and $\sigma_{\mathrm{S}^{\prime}}$ are the two possible triangulations of a circuit.

Secondary Polytope

Gelfand-Kapranov-Zelevinsky:

1. The vertices $\sigma_{\mathbf{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations \mathbf{T}.
2. When there is an edge between $\sigma_{\boldsymbol{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$?

When $\sigma_{\mathbf{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$ differ on a subtriagulation: The discrepancy

Secondary Polytope

Gelfand-Kapranov-Zelevinsky:

1. The vertices $\sigma_{\mathbf{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations \mathbf{T}.
2. When there is an edge between $\sigma_{\boldsymbol{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$?

When $\sigma_{\mathbf{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$ differ on a subtriagulation: The discrepancy $\sigma_{\mathbf{S}}$ and $\sigma_{\mathbf{S}^{\prime}}$ are the two possible triangulations of a circuit.

Secondary Polytope

Gelfand-Kapranov-Zelevinsky:

1. The vertices $\sigma_{\mathbf{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations \mathbf{T}.
2. When there is an edge between $\sigma_{\boldsymbol{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$?

When $\sigma_{\mathbf{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$ differ on a subtriagulation: The discrepancy $\sigma_{\mathbf{S}}$ and $\sigma_{\mathbf{S}^{\prime}}$ are the two possible triangulations of a circuit.

Dim 1:

Dim 2:

Dim 3:

$d=2:$
(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.
In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex.
$d=2$:
(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the
occurrence of a collision between two vertices of the
corresponding Laguerre tessellation.
In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex.
$d=2$:
(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the
corresponding Laguerre tessellation.
In the context of Hamilton-Jacobi equation (ii) means that the
corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex.
$d=2$:
(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.
In the context of Hamilton-Jacobi equation (ii) means that the
corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex.
$d=2:$
(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.
In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex.

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$.
Without loss of generality we may assume that P is finite. (Speed of propagation is finite.) Main Theorem: There are times

$$
t_{0}=0<t_{1}<\cdots<t_{k}<t_{k+1}=\infty,
$$

```
such that
1. In (ti, ti+1 ), we have a free motion.
2. At transition
```

we either have a coagulation or collision.
3. For $t>t_{k}$, the triangulation associated with h^{t} is very special (stable). We call it anti-H triangulation.
The definitions will be given shortly.

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$. Without loss of generality we may assume that P is finite. (Speed of propagation is finite.)

we either have a coagulation or collision.
3. For $t>t_{k}$, the triangulation associated with h^{t} is very special
(stable). We call it anti-H triangulation.
The definitions will be given shortly.

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$. Without loss of generality we may assume that P is finite.
(Speed of propagation is finite.) Main Theorem: There are times

$$
t_{0}=0<t_{1}<\cdots<t_{k}<t_{k+1}=\infty
$$

such that

1. In $\left(t_{i}, t_{i+1}\right)$, we have a free motion.
2. At transition
we either have a coagulation or collision.
3. For $t>t_{k}$, the triangulation associated with h^{t} is very special (stable). We call it anti-H triangulation. The definitions will be given shortly.

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$. Without loss of generality we may assume that P is finite.
(Speed of propagation is finite.) Main Theorem: There are times

$$
t_{0}=0<t_{1}<\cdots<t_{k}<t_{k+1}=\infty
$$

such that

1. In $\left(t_{i}, t_{i+1}\right)$, we have a free motion.
we either have a coagulation or collision.
2. For $t>t_{k}$, the triangulation associated with h^{t} is very special
(stable). We call it anti-H triangulation.
The definitions will be given shortly.

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$. Without loss of generality we may assume that P is finite.
(Speed of propagation is finite.) Main Theorem: There are times

$$
t_{0}=0<t_{1}<\cdots<t_{k}<t_{k+1}=\infty
$$

such that

1. In $\left(t_{i}, t_{i+1}\right)$, we have a free motion.
2. At transition

$$
t_{i}-\rightarrow t_{i}+
$$

we either have a coagulation or collision.
3. For $t>t_{k}$, the triangulation associated with h^{t} is very special
(stable). We call it anti-H triangulation.
The definitions will be given shortly.

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$. Without loss of generality we may assume that P is finite.
(Speed of propagation is finite.)
Main Theorem: There are times

$$
t_{0}=0<t_{1}<\cdots<t_{k}<t_{k+1}=\infty
$$

such that

1. In $\left(t_{i}, t_{i+1}\right)$, we have a free motion.
2. At transition

$$
t_{i}-\rightarrow t_{i}+
$$

we either have a coagulation or collision.
3. For $t>t_{k}$, the triangulation associated with h^{t} is very special (stable). We call it anti- H triangulation.

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$. Without loss of generality we may assume that P is finite.
(Speed of propagation is finite.)
Main Theorem: There are times

$$
t_{0}=0<t_{1}<\cdots<t_{k}<t_{k+1}=\infty
$$

such that

1. In $\left(t_{i}, t_{i+1}\right)$, we have a free motion.
2. At transition

$$
t_{i}-\rightarrow t_{i}+
$$

we either have a coagulation or collision.
3. For $t>t_{k}$, the triangulation associated with h^{t} is very special (stable). We call it anti- H triangulation.
The definitions will be given shortly.

Hamilton-Jacobi Dynamics: Free Motion

 During a free motion interval:u^{*} : The triangulation (domains of linearity of $\left.u^{*}\right) \mathrm{T}_{t}$ stays put, but the slopes of the graph of u^{*} change linearly with a velocity that will be described shortly.
u : The slopes of the graph stay put. The vertices of \mathbf{X}_{t} travel according to their velocities. If t, t^{\prime} are two times in the interval, then the corresponding faces in \mathbf{X}_{t} and $\mathbf{X}_{t^{\prime}}$ are parallel. Angles do not change.

Hamilton-Jacobi Dynamics: Free Motion

During a free motion interval:
u^{*} : The triangulation (domains of linearity of u^{*}) \mathbf{T}_{t} stays put, but the slopes of the graph of u^{*} change linearly with a velocity that will be described shortly.
u: The slopes of the graph stay put. The vertices of \mathbf{X}_{t} travel
according to their velocities. If t, t^{\prime} are two times in the interval, then the corresponding faces in \mathbf{X}_{t} and $\mathbf{X}_{t^{\prime}}$ are parallel. Angles do not change.

Hamilton-Jacobi Dynamics: Free Motion

During a free motion interval:
u^{*} : The triangulation (domains of linearity of $\left.u^{*}\right) \mathbf{T}_{t}$ stays put, but the slopes of the graph of u^{*} change linearly with a velocity that will be described shortly.
u : The slopes of the graph stay put. The vertices of \mathbf{X}_{t} travel according to their velocities.
then the corresponding faces in \mathbf{X}_{t} and $\mathbf{X}_{t^{\prime}}$ are parallel. Angles
do not change.

Hamilton-Jacobi Dynamics: Free Motion

During a free motion interval:
u^{*} : The triangulation (domains of linearity of u^{*}) \mathbf{T}_{t} stays put, but the slopes of the graph of u^{*} change linearly with a velocity that will be described shortly.
u : The slopes of the graph stay put. The vertices of \mathbf{X}_{t} travel according to their velocities. If t, t^{\prime} are two times in the interval, then the corresponding faces in \mathbf{X}_{t} and $\mathbf{X}_{t^{\prime}}$ are parallel. Angles do not change.

Hamilton-Jacobi Dynamics: Coagulation

u^{*} : Before t_{i}, there is a subtraingulation with $d+1$ triangles/simplexes as in the figure:

After t_{i} the $d+1$ simplexes are replaced with one simplex (their union).
u : Before t_{i} one cell in the tessellation \mathbf{X}_{t} is a simplex/triangle. This cell shrinks before t_{i}. At t_{i} the cell collapses to a vertex.

Hamilton-Jacobi Dynamics: Coagulation

u^{*} : Before t_{i}, there is a subtraingulation with $d+1$ triangles/simplexes as in the figure:

After t_{i} the $d+1$ simplexes are replaced with one simplex (their union).
u : Before t_{i} one cell in the tessellation \mathbf{X}_{t} is a simplex/triangle. This cell shrinks before t_{i}. At t_{i} the cell collapses to a vertex.

Hamilton-Jacobi Dynamics: Coagulation

u^{*} : Before t_{i}, there is a subtraingulation with $d+1$ triangles/simplexes as in the figure:

After t_{i} the $d+1$ simplexes are replaced with one simplex (their union).
u : Before t_{i} one cell in the tessellation \mathbf{X}_{t} is a simplex/triangle. This cell shrinks before t_{i}. At t_{i} the cell collapses to a vertex.

Hamilton-Jacobi Dynamics: Coagulation

u^{*} : Before t_{i}, there is a subtraingulation with $d+1$ triangles/simplexes as in the figure:

After t_{i} the $d+1$ simplexes are replaced with one simplex (their union).
u : Before t_{i} one cell in the tessellation \mathbf{X}_{t} is a simplex/triangle.
This cell shrinks before t_{i}.

Hamilton-Jacobi Dynamics: Coagulation

u^{*} : Before t_{i}, there is a subtraingulation with $d+1$ triangles/simplexes as in the figure:

After t_{i} the $d+1$ simplexes are replaced with one simplex (their union).
u : Before t_{i} one cell in the tessellation \mathbf{X}_{t} is a simplex/triangle.
This cell shrinks before t_{i}. At t_{i} the cell collapses to a vertex.

Hamilton-Jacobi Dynamics: Coagulation

u^{*} : Before t_{i}, there is a subtraingulation with $d+1$ triangles/simplexes as in the figure:

After t_{i} the $d+1$ simplexes are replaced with one simplex (their union).
u : Before t_{i} one cell in the tessellation \mathbf{X}_{t} is a simplex/triangle.
This cell shrinks before t_{i}. At t_{i} the cell collapses to a vertex.

Hamilton-Jacobi Dynamics: Coagulation

The red triangle shrinks: Triangles in \mathbf{X}_{t} can only shrink (not true for other type of cells).

Hamilton-Jacobi Dynamics: Collision

u^{*} : Before t_{i}, there is a circuit D with $d+2$ extreme points.
There are exactly two possible triangulations for this circuit, say $\mathbf{T}^{ \pm}$. At t_{i} we switch from \mathbf{T}^{-}to \mathbf{T}^{+}.

Hamilton-Jacobi Dynamics: Collision

u^{*} : Before t_{i}, there is a circuit D with $d+2$ extreme points.
There are exactly two possible triangulations for this circuit, say $\mathbf{T}^{ \pm}$. At t_{i} we switch from \mathbf{T}^{-}to \mathbf{T}^{+}.
u : Before t_{i} there are two vertices that travel according to their velocities and move towards each other.
At t_{i}, these vertices collide and gain new velocities.
After t_{i} these vertices travel according to their new velocities.

Hamilton-Jacobi Dynamics: Collision

u^{*} : Before t_{i}, there is a circuit D with $d+2$ extreme points.
There are exactly two possible triangulations for this circuit, say $\mathbf{T}^{ \pm}$. At t_{i} we switch from \mathbf{T}^{-}to \mathbf{T}^{+}.
u : Before t_{i} there are two vertices that travel according to their velocities and move towards each other.
At t_{i}, these vertices collide and gain new velocities.
After t_{i} these vertices travel according to their new velocities.

Hamilton-Jacobi Dynamics: Collision

u^{*} : Before t_{i}, there is a circuit D with $d+2$ extreme points.
There are exactly two possible triangulations for this circuit, say $\mathbf{T}^{ \pm}$. At t_{i} we switch from \mathbf{T}^{-}to \mathbf{T}^{+}.
u : Before t_{i} there are two vertices that travel according to their velocities and move towards each other.
At t_{i}, these vertices collide and gain new velocities. After t_{i} these vertices travel according to their new velocities.

Hamilton-Jacobi Dynamics: Collision

Two red vertices may get closer or move away from each other.

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X\left(\rho^{\prime}\right)$ is a common face of $X(\rho)$ and $X\left(\rho^{\prime}\right)$.

The vector $\rho-\rho^{\prime} \perp X(\rho) \cap X\left(\rho^{\prime}\right)$ (In dimension one this is
known as Rankine-Hugoniot Formula).
It points from $X\left(\rho^{\prime}\right)$ side to $X(\rho)$ side (this is entropy
condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T)=x^{t}(T)$ that is uniquely determined from solving

$$
x^{t}(T) \cdot\left(\rho-\rho^{\prime}\right)=h^{t}(\rho)-h^{t}\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T .
$$

3. The velocity of $x^{t}(T)$ is $-v(T)$, where $v(T)$ is the unique solution of the linear system

$$
v(T) \cdot\left(\rho-\rho^{\prime}\right)=H(\rho)-H\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T .
$$

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X\left(\rho^{\prime}\right)$ is a common face of $X(\rho)$ and $X\left(\rho^{\prime}\right)$. The vector $\rho-\rho^{\prime} \perp X(\rho) \cap X\left(\rho^{\prime}\right)$ (In dimension one this is known as Rankine-Hugoniot Formula).
It points from $X\left(\rho^{\prime}\right)$ side to $X(\rho)$ side (this is entropy
condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T)=x^{t}(T)$ that is uniquely determined from solving

$$
x^{t}(T) \cdot\left(\rho-\rho^{\prime}\right)=h^{t}(\rho)-h^{t}\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T
$$

3. The velocity of $x^{t}(T)$ is $-v(T)$, where $v(T)$ is the unique solution of the linear system

$$
v(T) \cdot\left(\rho-\rho^{\prime}\right)=H(\rho)-H\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T
$$

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X\left(\rho^{\prime}\right)$ is a common face of $X(\rho)$ and $X\left(\rho^{\prime}\right)$. The vector $\rho-\rho^{\prime} \perp X(\rho) \cap X\left(\rho^{\prime}\right)$ (In dimension one this is known as Rankine-Hugoniot Formula).
It points from $X\left(\rho^{\prime}\right)$ side to $X(\rho)$ side (this is entropy condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T)=x^{t}(T)$ that is uniquely determined from solving
3. The velocity of $x^{t}(T)$ is $-v(T)$, where $v(T)$ is the unique solution of the linear system

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X\left(\rho^{\prime}\right)$ is a common face of $X(\rho)$ and $X\left(\rho^{\prime}\right)$.

The vector $\rho-\rho^{\prime} \perp X(\rho) \cap X\left(\rho^{\prime}\right)$ (In dimension one this is known as Rankine-Hugoniot Formula).
It points from $X\left(\rho^{\prime}\right)$ side to $X(\rho)$ side (this is entropy condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T)=x^{t}(T)$ that is uniquely determined from solving

$$
x^{t}(T) \cdot\left(\rho-\rho^{\prime}\right)=h^{t}(\rho)-h^{t}\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T .
$$

3. The velocity of $x^{t}(T)$ is $-v(T)$, where $v(T)$ is the unique solution of the linear system

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X\left(\rho^{\prime}\right)$ is a common face of $X(\rho)$ and $X\left(\rho^{\prime}\right)$.

The vector $\rho-\rho^{\prime} \perp X(\rho) \cap X\left(\rho^{\prime}\right)$ (In dimension one this is known as Rankine-Hugoniot Formula).
It points from $X\left(\rho^{\prime}\right)$ side to $X(\rho)$ side (this is entropy condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T)=x^{t}(T)$ that is uniquely determined from solving

$$
x^{t}(T) \cdot\left(\rho-\rho^{\prime}\right)=h^{t}(\rho)-h^{t}\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T .
$$

3. The velocity of $x^{t}(T)$ is $-v(T)$, where $v(T)$ is the unique solution of the linear system

$$
v(T) \cdot\left(\rho-\rho^{\prime}\right)=H(\rho)-H\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T
$$

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X\left(\rho^{\prime}\right)$ is a common face of $X(\rho)$ and $X\left(\rho^{\prime}\right)$.

The vector $\rho-\rho^{\prime} \perp X(\rho) \cap X\left(\rho^{\prime}\right)$ (In dimension one this is known as Rankine-Hugoniot Formula).
It points from $X\left(\rho^{\prime}\right)$ side to $X(\rho)$ side (this is entropy
condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T)=x^{t}(T)$ that is uniquely determined from solving

$$
x^{t}(T) \cdot\left(\rho-\rho^{\prime}\right)=h^{t}(\rho)-h^{t}\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T .
$$

3. The velocity of $x^{t}(T)$ is $-v(T)$, where $v(T)$ is the unique solution of the linear system

$$
v(T) \cdot\left(\rho-\rho^{\prime}\right)=H(\rho)-H\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T
$$

Moral: v is a vertex in the tessellation $\mathbf{X}(H)$.

Hamilton-Jacobi Dynamics: Circuits

If R is a circuit, then there exists a function $c: R \rightarrow(0, \infty)$ and a decomposition $R=R^{-} \cup R^{+}$such that

$$
\begin{aligned}
& \sum_{m \in R^{ \pm}} c(m)=1 \\
& a:=\sum_{m \in R^{-}} c(m) m=\sum_{m \in R^{+}} c(m) m
\end{aligned}
$$

Dim 1:

Dim 2:

Dim 3:

Hamilton-Jacobi Dynamics: Circuits

If R is a circuit, then there exists a function $c: R \rightarrow(0, \infty)$ and a decomposition $R=R^{-} \cup R^{+}$such that

$$
\begin{aligned}
& \sum_{m \in R^{ \pm}} c(m)=1 \\
& a:=\sum_{m \in R^{-}} c(m) m=\sum_{m \in R^{+}} c(m) m
\end{aligned}
$$

Dim 1:

Dim 2:

Dim 3:

Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

$$
\mathbf{T}^{ \pm}(R)=\left\{R \backslash\{m\}: m \in R^{\mp}\right\} .
$$

Choose \pm so that

In this way the restriction of H to R is associated with the
triangulation $\mathbf{T}^{-}(R)$.
If two triangulations \mathbf{T} and T^{\prime} are vertices of an edge of the
secondary polytope, then they differ only on a circuit R.
We call the edge positive if $\mathbf{T} \rightarrow \mathbf{T}^{\prime}$ means switching from $\mathbf{T}^{-}(R)$
to $\mathrm{T}^{+}(R)$.
In the HJ dynamics we can only jump across a positive edge at

Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

$$
\mathbf{T}^{ \pm}(R)=\left\{R \backslash\{m\}: m \in R^{\mp}\right\} .
$$

Choose \pm so that

$$
\hat{H}(R)=\sum_{m \in R^{+}} c(m) H(m)-\sum_{m \in R^{-}} c(m) H(m) \geq 0 .
$$

In this way the restriction of H to R is associated with the
triangulation $\mathbf{T}^{-}(R)$.
If two triangulations \mathbf{T} and T^{\prime} are vertices of an edge of the secondary polytope, then they differ only on a circuit R. We call the edge positive if $\mathrm{T} \rightarrow \mathrm{T}^{\prime}$ means switching from $\mathrm{T}^{-}(R)$ to $\mathbf{T}^{+}(R)$.
In the HJ dynamics we can only jump across a positive edge at

Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

$$
\mathbf{T}^{ \pm}(R)=\left\{R \backslash\{m\}: m \in R^{\mp}\right\}
$$

Choose \pm so that

$$
\hat{H}(R)=\sum_{m \in R^{+}} c(m) H(m)-\sum_{m \in R^{-}} c(m) H(m) \geq 0
$$

In this way the restriction of H to R is associated with the triangulation $\mathbf{T}^{-}(R)$.
If two triangulations T and T^{\prime} are vertices of an edge of the
secondary polytope, then they differ only on a circuit R.
We call the edge positive if $\mathbf{T} \rightarrow \mathbf{T}^{\prime}$ means switching from $\mathbf{T}^{-}(R)$
to $\mathrm{T}^{+}(R)$.
In the HJ dynamics we can only jump across a positive edge at

Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

$$
\mathbf{T}^{ \pm}(R)=\left\{R \backslash\{m\}: m \in R^{\mp}\right\} .
$$

Choose \pm so that

$$
\hat{H}(R)=\sum_{m \in R^{+}} c(m) H(m)-\sum_{m \in R^{-}} c(m) H(m) \geq 0
$$

In this way the restriction of H to R is associated with the triangulation $\mathbf{T}^{-}(R)$.
If two triangulations \mathbf{T} and \mathbf{T}^{\prime} are vertices of an edge of the secondary polytope, then they differ only on a circuit R.

Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

$$
\mathbf{T}^{ \pm}(R)=\left\{R \backslash\{m\}: m \in R^{\mp}\right\} .
$$

Choose \pm so that

$$
\hat{H}(R)=\sum_{m \in R^{+}} c(m) H(m)-\sum_{m \in R^{-}} c(m) H(m) \geq 0
$$

In this way the restriction of H to R is associated with the triangulation $\mathbf{T}^{-}(R)$.
If two triangulations \mathbf{T} and \mathbf{T}^{\prime} are vertices of an edge of the secondary polytope, then they differ only on a circuit R. We call the edge positive if $\mathbf{T} \rightarrow \mathbf{T}^{\prime}$ means switching from $\mathbf{T}^{-}(R)$ to $\mathbf{T}^{+}(R)$.

Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

$$
\mathbf{T}^{ \pm}(R)=\left\{R \backslash\{m\}: m \in R^{\mp}\right\}
$$

Choose \pm so that

$$
\hat{H}(R)=\sum_{m \in R^{+}} c(m) H(m)-\sum_{m \in R^{-}} c(m) H(m) \geq 0
$$

In this way the restriction of H to R is associated with the triangulation $\mathbf{T}^{-}(R)$.
If two triangulations \mathbf{T} and \mathbf{T}^{\prime} are vertices of an edge of the secondary polytope, then they differ only on a circuit R. We call the edge positive if $\mathbf{T} \rightarrow \mathbf{T}^{\prime}$ means switching from $\mathbf{T}^{-}(R)$ to $\mathbf{T}^{+}(R)$.
In the HJ dynamics we can only jump across a positive edge at t_{i}.

Hamilton-Jacobi Dynamics: Coagulation/Collision

1. The time of a coagulation of a shrinking $f: R \rightarrow \mathbb{R}$:

$$
\tau=\frac{\hat{f}(R)}{\hat{H}(R)}
$$

2. If $f: R \rightarrow \mathbb{R}$, and $\hat{f}(R)<0$, then the triangulation induced by
f is $\mathbf{T}^{+}(R)$ and there will be no collision.
3. If $f: R \rightarrow \mathbb{R}$, and $\hat{f}(R)>0$, then the triangulation induced by
f is $\mathbf{T}^{-}(R)$, and collision occurs at

Hamilton-Jacobi Dynamics: Coagulation/Collision

1. The time of a coagulation of a shrinking $f: R \rightarrow \mathbb{R}$:

$$
\tau=\frac{\hat{f}(R)}{\hat{H}(R)}
$$

2. If $f: R \rightarrow \mathbb{R}$, and $\hat{f}(R)<0$, then the triangulation induced by f is $\mathbf{T}^{+}(R)$ and there will be no collision.

Hamilton-Jacobi Dynamics: Coagulation/Collision

1. The time of a coagulation of a shrinking $f: R \rightarrow \mathbb{R}$:

$$
\tau=\frac{\hat{f}(R)}{\hat{H}(R)}
$$

2. If $f: R \rightarrow \mathbb{R}$, and $\hat{f}(R)<0$, then the triangulation induced by f is $\mathbf{T}^{+}(R)$ and there will be no collision.
3. If $f: R \rightarrow \mathbb{R}$, and $\hat{f}(R)>0$, then the triangulation induced by
f is $\mathbf{T}^{-}(R)$, and collision occurs at

$$
\tau=\frac{\hat{f}(R)}{\hat{H}(R)}
$$

Measures on Laguerre Tessellations

Goal: We wish to construct a family $\{\nu(f)\}$ of probability measures on \mathcal{C} for a given kernel $f\left(x, \rho_{-}, \rho_{+}\right) ; x \in \mathbb{R}^{d}, \rho^{ \pm} \in \mathbb{R}^{d}$. Here $f\left(x, \rho^{-}, \rho^{+}\right)$is a rate at which ρ^{-}switches to ρ^{+}at x. The measure $\nu=\nu(f)$ is a Gibbs-like measure.
Remark: Assume $d=2$. Let $C\left(\rho^{-}\right)$and $C\left(\rho^{+}\right)$be two adjacent cells. Choose $\tau\left(\rho^{-}, \rho^{+}\right)$a vector in the direction of the common edge.

$$
\tau\left(\rho^{-}, \rho^{+}\right) \cdot\left(\rho^{+}-\rho^{-}\right)=0
$$

The vector $\rho^{+}-\rho^{-}$points from the ρ^{-}-side to the ρ^{+}-side (convexity).

Measures on Laguerre Tessellations

Goal: We wish to construct a family $\{\nu(f)\}$ of probability measures on \mathcal{C} for a given kernel $f\left(x, \rho_{-}, \rho_{+}\right) ; x \in \mathbb{R}^{d}, \rho^{ \pm} \in \mathbb{R}^{d}$.
Here $f\left(x, \rho^{-}, \rho^{+}\right)$is a rate at which ρ^{-}switches to ρ^{+}at x.
The measure $\nu=\nu(f)$ is a Gibbs-like measure.
Remark: Assume $d=2$. Let $C\left(\rho^{-}\right)$and $C\left(\rho^{+}\right)$be two adjacent
cells. Choose $\tau\left(\rho^{-}, \rho^{+}\right)$a vector in the direction of the common edge.

The vector $\rho^{+}-\rho^{-}$points from the ρ^{-}-side to the ρ^{+}-side (convexity).

Measures on Laguerre Tessellations

Goal: We wish to construct a family $\{\nu(f)\}$ of probability measures on \mathcal{C} for a given kernel $f\left(x, \rho_{-}, \rho_{+}\right) ; x \in \mathbb{R}^{d}, \rho^{ \pm} \in \mathbb{R}^{d}$. Here $f\left(x, \rho^{-}, \rho^{+}\right)$is a rate at which ρ^{-}switches to ρ^{+}at x.
The measure $\nu=\nu(f)$ is a Gibbs-like measure.
Remark: Assume $d=2$. Let $C\left(\rho^{-}\right)$and $C\left(\rho^{+}\right)$be two adjacent
cells. Choose $\tau\left(\rho^{-}, \rho^{+}\right)$a vector in the direction of the common edge.

The vector $\rho^{+}-\rho^{-}$points from the ρ^{-}-side to the ρ^{+}-side (convexity).

Measures on Laguerre Tessellations

Goal: We wish to construct a family $\{\nu(f)\}$ of probability measures on \mathcal{C} for a given kernel $f\left(x, \rho_{-}, \rho_{+}\right) ; x \in \mathbb{R}^{d}, \rho^{ \pm} \in \mathbb{R}^{d}$. Here $f\left(x, \rho^{-}, \rho^{+}\right)$is a rate at which ρ^{-}switches to ρ^{+}at x. The measure $\nu=\nu(f)$ is a Gibbs-like measure.

The vector $\rho^{+}-\rho^{-}$points from the ρ^{-}-side to the ρ^{+}-side (convexity).

Measures on Laguerre Tessellations

Goal: We wish to construct a family $\{\nu(f)\}$ of probability measures on \mathcal{C} for a given kernel $f\left(x, \rho_{-}, \rho_{+}\right) ; x \in \mathbb{R}^{d}, \rho^{ \pm} \in \mathbb{R}^{d}$. Here $f\left(x, \rho^{-}, \rho^{+}\right)$is a rate at which ρ^{-}switches to ρ^{+}at x.
The measure $\nu=\nu(f)$ is a Gibbs-like measure.
Remark: Assume $d=2$. Let $C\left(\rho^{-}\right)$and $C\left(\rho^{+}\right)$be two adjacent cells. Choose $\tau\left(\rho^{-}, \rho^{+}\right)$a vector in the direction of the common edge.

The vector $\rho^{+}-\rho^{-}$points from the ρ^{-}-side to the ρ^{+}-side (convexity).

Measures on Laguerre Tessellations

Goal: We wish to construct a family $\{\nu(f)\}$ of probability measures on \mathcal{C} for a given kernel $f\left(x, \rho_{-}, \rho_{+}\right) ; x \in \mathbb{R}^{d}, \rho^{ \pm} \in \mathbb{R}^{d}$. Here $f\left(x, \rho^{-}, \rho^{+}\right)$is a rate at which ρ^{-}switches to ρ^{+}at x.
The measure $\nu=\nu(f)$ is a Gibbs-like measure.
Remark: Assume $d=2$. Let $C\left(\rho^{-}\right)$and $C\left(\rho^{+}\right)$be two adjacent cells. Choose $\tau\left(\rho^{-}, \rho^{+}\right)$a vector in the direction of the common edge.

$$
\tau\left(\rho^{-}, \rho^{+}\right) \cdot\left(\rho^{+}-\rho^{-}\right)=0
$$

The vector $\rho^{+}-\rho^{-}$points from the ρ^{-}-side to the ρ^{+}-side (convexity).

Measures on Laguerre Tessellations

Goal: We wish to construct a family $\{\nu(f)\}$ of probability measures on \mathcal{C} for a given kernel $f\left(x, \rho_{-}, \rho_{+}\right) ; x \in \mathbb{R}^{d}, \rho^{ \pm} \in \mathbb{R}^{d}$. Here $f\left(x, \rho^{-}, \rho^{+}\right)$is a rate at which ρ^{-}switches to ρ^{+}at x.
The measure $\nu=\nu(f)$ is a Gibbs-like measure.
Remark: Assume $d=2$. Let $C\left(\rho^{-}\right)$and $C\left(\rho^{+}\right)$be two adjacent cells. Choose $\tau\left(\rho^{-}, \rho^{+}\right)$a vector in the direction of the common edge.

$$
\tau\left(\rho^{-}, \rho^{+}\right) \cdot\left(\rho^{+}-\rho^{-}\right)=0
$$

The vector $\rho^{+}-\rho^{-}$points from the ρ^{-}-side to the ρ^{+}-side (convexity).

Measures on Laguerre Tessellations

Goal: We wish to construct a family $\{\nu(f)\}$ of probability measures on \mathcal{C} for a given kernel $f\left(x, \rho_{-}, \rho_{+}\right) ; x \in \mathbb{R}^{d}, \rho^{ \pm} \in \mathbb{R}^{d}$. Here $f\left(x, \rho^{-}, \rho^{+}\right)$is a rate at which ρ^{-}switches to ρ^{+}at x.
The measure $\nu=\nu(f)$ is a Gibbs-like measure.
Remark: Assume $d=2$. Let $C\left(\rho^{-}\right)$and $C\left(\rho^{+}\right)$be two adjacent cells. Choose $\tau\left(\rho^{-}, \rho^{+}\right)$a vector in the direction of the common edge.

$$
\tau\left(\rho^{-}, \rho^{+}\right) \cdot\left(\rho^{+}-\rho^{-}\right)=0
$$

The vector $\rho^{+}-\rho^{-}$points from the ρ^{-}-side to the ρ^{+}-side (convexity).

Gibbs Measure/Rough Description

1. Build a random tessellation inside a set, say a box.
2.Vary the size of the box. Verify the consistency.

How do we build our tessellation in a box?
(Boundary Condition) Restriction to the boundary is a
one-dimensional tessellation. In a Markovian fashion, build this tessellation. $p^{ \pm}$determines the separating edge (normal to $\left.\rho^{+}-\rho^{-}\right)$. These edges intersect inside the box.
Important Point A choice of $\tau\left(\rho^{-}, \rho^{+}\right)$(normal to $\rho^{+}-\rho^{-}$) gives an orientation to edges.

Gibbs Measure/Rough Description

1. Build a random tessellation inside a set, say a box.
2. Vary the size of the box. Verify the consistency.

How do we build our tessellation in a box?
(Boundary Condition) Restriction to the boundary is a
one-dimensional tessellation. In a Markovian fashion, build this tessellation. $\rho^{ \pm}$determines the separating edge (normal to
$\left.\rho^{+}-\rho^{-}\right)$. These edges intersect inside the box.
Important Point A choice of $\tau\left(\rho^{-}, \rho^{+}\right)$(normal to $\rho^{+}-\rho^{-}$) gives
an orientation to edges.

Gibbs Measure/Rough Description

1. Build a random tessellation inside a set, say a box. 2. Vary the size of the box. Verify the consistency.
(Boundary Condition) Restriction to the boundary is a
one-dimensional tessellation. In a Markovian fashion, build this tessellation. $p^{ \pm}$determines the separating edge (normal to $\left.\rho^{+}-\rho^{-}\right)$. These edges intersect inside the box. Important Point A choice of $\tau\left(\rho^{-}, \rho^{+}\right)$(normal to $\rho^{+}-\rho^{-}$) gives an orientation to edges.

Gibbs Measure/Rough Description

1. Build a random tessellation inside a set, say a box. 2. Vary the size of the box. Verify the consistency. How do we build our tessellation in a box?
(Boundary Condition) Restriction to the boundary is a
one-dimensional tessellation. In a Markovian fashion, build this tessellation. $\rho^{ \pm}$determines the separating edge (normal to $\left.\rho^{+}-\rho^{-}\right)$. These edges intersect inside the box. Important Point A choice of $\tau\left(\rho^{-}, \rho^{+}\right)$(normal to $\rho^{+}-\rho^{-}$) gives an orientation to edges.

Gibbs Measure/Rough Description

1. Build a random tessellation inside a set, say a box. 2.Vary the size of the box. Verify the consistency. How do we build our tessellation in a box?
(Boundary Condition) Restriction to the boundary is a one-dimensional tessellation.
$\left.\rho^{+}-\rho^{-}\right)$. These edges intersect inside the box.
Important Point A choice of $\tau\left(\rho^{-}, \rho^{+}\right)$(normal to $\left.\rho^{+}-\rho^{-}\right)$gives
an orientation to edges.

Gibbs Measure/Rough Description

1. Build a random tessellation inside a set, say a box. 2. Vary the size of the box. Verify the consistency. How do we build our tessellation in a box?
(Boundary Condition) Restriction to the boundary is a one-dimensional tessellation. In a Markovian fashion, build this tessellation.
$\left.\rho^{+}-\rho^{-}\right)$. These edges intersect inside the box.
Important Point A choice of $\tau\left(\rho^{-}, \rho^{+}\right)$(normal to $\rho^{+}-\rho^{-}$) gives
an orientation to edges.

Gibbs Measure/Rough Description

1. Build a random tessellation inside a set, say a box.
2. Vary the size of the box. Verify the consistency. How do we build our tessellation in a box?
(Boundary Condition) Restriction to the boundary is a one-dimensional tessellation. In a Markovian fashion, build this tessellation. $\rho^{ \pm}$determines the separating edge (normal to $\rho^{+}-\rho^{-}$).

Gibbs Measure/Rough Description

1. Build a random tessellation inside a set, say a box.
2. Vary the size of the box. Verify the consistency. How do we build our tessellation in a box?
(Boundary Condition) Restriction to the boundary is a one-dimensional tessellation. In a Markovian fashion, build this tessellation. $\rho^{ \pm}$determines the separating edge (normal to $\rho^{+}-\rho^{-}$). These edges intersect inside the box.

Gibbs Measure/Rough Description

1. Build a random tessellation inside a set, say a box.
2. Vary the size of the box. Verify the consistency. How do we build our tessellation in a box?
(Boundary Condition) Restriction to the boundary is a one-dimensional tessellation. In a Markovian fashion, build this tessellation. $\rho^{ \pm}$determines the separating edge (normal to $\left.\rho^{+}-\rho^{-}\right)$. These edges intersect inside the box. Important Point A choice of $\tau\left(\rho^{-}, \rho^{+}\right)$(normal to $\rho^{+}-\rho^{-}$) gives an orientation to edges.

Gibbs Measure/Rough Description

(Interior Construction) Inside the box, create more vertices: An edge may branch off to two edges.
(Boundary Condition, More Details) Move counter-clockwise with speed one, and change from ρ^{-}to ρ^{+}at point x with rate

$$
\left[\tau\left(\rho^{-}, \rho^{+}\right) \cdot n(x)\right]^{+} f\left(x, \rho^{-}, \rho^{+}\right)
$$

where $n(x)$ is the inward unit normal at x.
How do we resolve the intersection of edges inside the box?
This can be achieved if we assume

$$
f\left(x, \rho_{-}, \rho_{+}\right)>0 \Longrightarrow \tau\left(\rho_{-}, \rho_{+}\right) \text {points upward }
$$

Start from jump points on the boundary, and move them inside the box with unit speed in x_{2} direction. These points are only at the bottom or the sides of the box. Think of x_{2} as time.

Gibbs Measure/Rough Description

(Interior Construction) Inside the box, create more vertices: An edge may branch off to two edges.
(Boundary Condition, More Details) Move counter-clockwise
with speed one, and change from ρ^{-}to ρ^{+}at point x with rate

$$
\left[\tau\left(\rho^{-}, \rho^{+}\right) \cdot n(x)\right]^{+} f\left(x, \rho^{-}, \rho^{+}\right),
$$

where $n(x)$ is the inward unit normal at x.
How do we resolve the intersection of edges inside the box?
This can be achieved if we assume

$$
f\left(x, \rho_{-}, \rho_{+}\right)>0 \Longrightarrow \tau\left(\rho_{-}, \rho_{+}\right) \text {points upward }
$$

Start from jump points on the boundary, and move them inside the box with unit speed in x_{2} direction. These points are only at the bottom or the sides of the box. Think of x_{2} as time.

Gibbs Measure/Rough Description

(Interior Construction) Inside the box, create more vertices: An edge may branch off to two edges.
(Boundary Condition, More Details) Move counter-clockwise with speed one, and change from ρ^{-}to ρ^{+}at point x with rate

$$
\left[\tau\left(\rho^{-}, \rho^{+}\right) \cdot n(x)\right]^{+} f\left(x, \rho^{-}, \rho^{+}\right)
$$

where $n(x)$ is the inward unit normal at x.
This can be achieved if we assume

Start from jump points on the boundary, and move them inside
the box with unit speed in x_{2} direction. These points are only at
the bottom or the sides of the box. Think of x_{2} as time.

Gibbs Measure/Rough Description

(Interior Construction) Inside the box, create more vertices: An edge may branch off to two edges.
(Boundary Condition, More Details) Move counter-clockwise with speed one, and change from ρ^{-}to ρ^{+}at point x with rate

$$
\left[\tau\left(\rho^{-}, \rho^{+}\right) \cdot n(x)\right]^{+} f\left(x, \rho^{-}, \rho^{+}\right)
$$

where $n(x)$ is the inward unit normal at x. How do we resolve the intersection of edges inside the box?
This can be achieved if we assume

Start from jump points on the boundary, and move them inside
the box with unit speed in x_{2} direction. These points are only at
the bottom or the sides of the box. Think of x_{2} as time.

Gibbs Measure/Rough Description

(Interior Construction) Inside the box, create more vertices: An edge may branch off to two edges.
(Boundary Condition, More Details) Move counter-clockwise with speed one, and change from ρ^{-}to ρ^{+}at point x with rate

$$
\left[\tau\left(\rho^{-}, \rho^{+}\right) \cdot n(x)\right]^{+} f\left(x, \rho^{-}, \rho^{+}\right)
$$

where $n(x)$ is the inward unit normal at x. How do we resolve the intersection of edges inside the box?
This can be achieved if we assume

$$
f\left(x, \rho_{-}, \rho_{+}\right)>0 \Longrightarrow \tau\left(\rho_{-}, \rho_{+}\right) \text {points upward }
$$

Start from jump points on the boundary, and move them inside
the box with unit speed in x_{2} direction. These points are only at
the bottom or the sides of the box. Think of x_{2} as time.

Gibbs Measure/Rough Description

(Interior Construction) Inside the box, create more vertices: An edge may branch off to two edges.
(Boundary Condition, More Details) Move counter-clockwise with speed one, and change from ρ^{-}to ρ^{+}at point x with rate

$$
\left[\tau\left(\rho^{-}, \rho^{+}\right) \cdot n(x)\right]^{+} f\left(x, \rho^{-}, \rho^{+}\right)
$$

where $n(x)$ is the inward unit normal at x. How do we resolve the intersection of edges inside the box?
This can be achieved if we assume

$$
f\left(x, \rho_{-}, \rho_{+}\right)>0 \Longrightarrow \tau\left(\rho_{-}, \rho_{+}\right) \text {points upward }
$$

Start from jump points on the boundary, and move them inside the box with unit speed in x_{2} direction.
the bottom or the sides of the box. Think of x_{2} as time.

Gibbs Measure/Rough Description

(Interior Construction) Inside the box, create more vertices: An edge may branch off to two edges.
(Boundary Condition, More Details) Move counter-clockwise with speed one, and change from ρ^{-}to ρ^{+}at point x with rate

$$
\left[\tau\left(\rho^{-}, \rho^{+}\right) \cdot n(x)\right]^{+} f\left(x, \rho^{-}, \rho^{+}\right)
$$

where $n(x)$ is the inward unit normal at x. How do we resolve the intersection of edges inside the box?
This can be achieved if we assume

$$
f\left(x, \rho_{-}, \rho_{+}\right)>0 \Longrightarrow \tau\left(\rho_{-}, \rho_{+}\right) \text {points upward }
$$

Start from jump points on the boundary, and move them inside the box with unit speed in x_{2} direction. These points are only at the bottom or the sides of the box.

Gibbs Measure/Rough Description

(Interior Construction) Inside the box, create more vertices: An edge may branch off to two edges.
(Boundary Condition, More Details) Move counter-clockwise with speed one, and change from ρ^{-}to ρ^{+}at point x with rate

$$
\left[\tau\left(\rho^{-}, \rho^{+}\right) \cdot n(x)\right]^{+} f\left(x, \rho^{-}, \rho^{+}\right)
$$

where $n(x)$ is the inward unit normal at x. How do we resolve the intersection of edges inside the box?
This can be achieved if we assume

$$
f\left(x, \rho_{-}, \rho_{+}\right)>0 \Longrightarrow \tau\left(\rho_{-}, \rho_{+}\right) \text {points upward }
$$

Start from jump points on the boundary, and move them inside the box with unit speed in x_{2} direction. These points are only at the bottom or the sides of the box. Think of x_{2} as time.

Gibbs Measure/Rough Description

(Interior Construction) Inside the box, create more vertices: An edge may branch off to two edges.
(Boundary Condition, More Details) Move counter-clockwise with speed one, and change from ρ^{-}to ρ^{+}at point x with rate

$$
\left[\tau\left(\rho^{-}, \rho^{+}\right) \cdot n(x)\right]^{+} f\left(x, \rho^{-}, \rho^{+}\right)
$$

where $n(x)$ is the inward unit normal at x. How do we resolve the intersection of edges inside the box?
This can be achieved if we assume

$$
f\left(x, \rho_{-}, \rho_{+}\right)>0 \Longrightarrow \tau\left(\rho_{-}, \rho_{+}\right) \text {points upward }
$$

Start from jump points on the boundary, and move them inside the box with unit speed in x_{2} direction. These points are only at the bottom or the sides of the box. Think of x_{2} as time.

Gibbs Measure

Figure 1. The blue dot represents the coagulation of the particles with labels (ρ_{2}, ρ_{3}) and (ρ_{3}, ρ_{4}) into the particle with label $\left(\rho_{2}, \rho_{4}\right)$. The red dot represents the fragmentation of the particle with label $\left(\rho_{0}, \rho_{2}\right)$ into two particles of respective labels $\left(\rho_{0}, \rho_{02}\right)$ and $\left(\rho_{02}, \rho_{2}\right)$.

Gibbs Measure

(Coalesence) Before collision of edges:
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
After collision we have one edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$
(Interior Dynamics/Splitting) (x_{2} is treated as time) Before splitting:
One edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$
After fragmentation: two edges.
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
Splitting rate:

$$
\sigma\left(\rho^{-}, \rho^{*}, \rho^{+}\right)^{-} \frac{f\left(x, \rho^{-}, \rho^{*}\right) f\left(x, \rho^{*}, \rho^{+}\right)}{f\left(x, \rho^{-}, \rho^{+}\right)}
$$

σ is expressed in terms of $\tau\left(\rho^{-}, \rho^{*}\right)-\tau\left(\rho^{*}, \rho^{+}\right)$.

Gibbs Measure

(Coalesence) Before collision of edges:
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
After collision we have one edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$
(Interior Dynamics/Splitting) (x_{2} is treated as time) Before splitting:
One edge separating $C\left(\rho^{-}\right)$from $C\left(p^{+}\right)$
After fragmentation: two edges.
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
Splitting rate:

$$
\sigma\left(\rho^{-}, \rho^{*}, \rho^{+}\right)^{-} \frac{f\left(x, \rho^{-}, \rho^{*}\right) f\left(x, \rho^{*}, \rho^{+}\right)}{f\left(x, \rho^{-}, \rho^{+}\right)}
$$

σ is expressed in terms of $\tau\left(\rho^{-}, \rho^{*}\right)-\tau\left(\rho^{*}, \rho^{+}\right)$.

Gibbs Measure

(Coalesence) Before collision of edges:
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
After collision we have one edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$
(Interior Dynamics/Splitting) (x_{2} is treated as time) Before
splitting:
One edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$
After fragmentation: two edges.
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
Splitting rate:

σ is expressed in terms of $\tau\left(\rho^{-}, \rho^{*}\right)-\tau\left(\rho^{*}, \rho^{+}\right)$.

Gibbs Measure

(Coalesence) Before collision of edges:
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$

> After collision we have one edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$
> (Interior Dynamics/Splitting) (x_{2} is treated as time) Before
> splitting:
> One edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$
> After fragmentation: two edges.
> Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
> Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
> Splitting rate:

σ is expressed in terms of $\tau\left(\rho^{-}, \rho^{*}\right)-\tau\left(\rho^{*}, \rho^{+}\right)$.

Gibbs Measure

(Coalesence) Before collision of edges:
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
After collision we have one edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$

Gibbs Measure

(Coalesence) Before collision of edges:
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
After collision we have one edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$ (Interior Dynamics/Splitting) (x_{2} is treated as time) Before splitting:

Gibbs Measure

(Coalesence) Before collision of edges:
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
After collision we have one edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$ (Interior Dynamics/Splitting) (x_{2} is treated as time) Before splitting:
One edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$
After fragmentation: two edges.
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
Splitting rate:
σ is expressed in terms of $\tau\left(\rho^{-}, \rho^{*}\right)-\tau\left(\rho^{*}, \rho^{+}\right)$.

Gibbs Measure

(Coalesence) Before collision of edges:
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
After collision we have one edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$ (Interior Dynamics/Splitting) (x_{2} is treated as time) Before splitting:
One edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$
After fragmentation: two edges.
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
Splitting rate:
σ is expressed in terms of $\tau\left(\rho^{-}, \rho^{*}\right)-\tau\left(\rho^{*}, \rho^{+}\right)$.

Gibbs Measure

(Coalesence) Before collision of edges:
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
After collision we have one edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$ (Interior Dynamics/Splitting) (x_{2} is treated as time) Before splitting:
One edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$
After fragmentation: two edges.
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
Splitting rate:
σ is expressed in terms of $\tau\left(\rho^{-}, \rho^{*}\right)-\tau\left(\rho^{*}, \rho^{+}\right)$.

Gibbs Measure

(Coalesence) Before collision of edges:
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
After collision we have one edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$ (Interior Dynamics/Splitting) (x_{2} is treated as time) Before splitting:
One edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$
After fragmentation: two edges.
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$

Gibbs Measure

(Coalesence) Before collision of edges:
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
After collision we have one edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$ (Interior Dynamics/Splitting) (x_{2} is treated as time) Before splitting:
One edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$
After fragmentation: two edges.
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
Splitting rate:
σ is expressed in terms of $\tau\left(\rho^{-}, \rho^{*}\right)-\tau\left(\rho^{*}, \rho^{+}\right)$.

Gibbs Measure

(Coalesence) Before collision of edges:
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
After collision we have one edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$ (Interior Dynamics/Splitting) (x_{2} is treated as time) Before splitting:
One edge separating $C\left(\rho^{-}\right)$from $C\left(\rho^{+}\right)$
After fragmentation: two edges.
Edge 1: separating $C\left(\rho^{-}\right)$from $C\left(\rho^{*}\right)$
Edge 2: separating $C\left(\rho^{*}\right)$ from $C\left(\rho^{+}\right)$
Splitting rate:

$$
\sigma\left(\rho^{-}, \rho^{*}, \rho^{+}\right)^{-} \frac{f\left(x, \rho^{-}, \rho^{*}\right) f\left(x, \rho^{*}, \rho^{+}\right)}{f\left(x, \rho^{-}, \rho^{+}\right)}
$$

σ is expressed in terms of $\tau\left(\rho^{-}, \rho^{*}\right)-\tau\left(\rho^{*}, \rho^{+}\right)$.

Gibbs Measure (Consistency)

These measures are consistent if f satisfies a kinetic equation
(FR and Ouaki (2022)).
Set

$$
\alpha\left(\rho_{-}, \rho_{+}\right)=\left(\rho_{+}^{2}-\rho_{-}^{2}\right) /\left(\rho_{+}^{1}-\rho_{-}^{1}\right),
$$

for the slope of $\rho_{+}-\rho_{-}$, so that we can choose $\tau=(-\alpha, 1)$. Put

$$
F=\tau f=(-\alpha f, f), \quad F^{1}=(f, \alpha f)
$$

Kinetic Equation:
$\left.\operatorname{div}\left(F^{(} \rho_{-}, \rho_{+}\right)\right)=\left(F^{\perp} * F\right)\left(\rho_{-}, \rho_{+}\right)-F^{\perp} \cdot\left(A(F)\left(\rho_{+}\right)-A\left(F^{-}\right)\left(\rho_{-}\right)\right)$,
where

$$
A(F)(\rho)=\int F(\rho, m) d m
$$

Gibbs Measure (Consistency)

These measures are consistent if f satisfies a kinetic equation (FR and Ouaki (2022)).
Set

$$
\alpha\left(\rho_{-}, \rho_{+}\right)=\left(\rho_{+}^{2}-\rho_{-}^{2}\right) /\left(\rho_{+}^{1}-\rho_{-}^{1}\right),
$$

for the slope of $\rho_{+}-\rho_{-}$, so that we can choose $\tau=(-\alpha, 1)$. Put

$$
F=\tau f=(-\alpha f, f), \quad F^{\perp}-(f, \alpha f) .
$$

Kinetic Equation:
$\operatorname{div}\left(F\left(\rho_{-}, \rho_{+}\right)\right)=\left(F^{\perp} * F\right)\left(\rho_{-}, \rho_{+}\right)-F^{\perp} \cdot\left(A(F)\left(\rho_{+}\right)-A(F)\left(\rho_{-}\right)\right)$,
where
$A(F)(\rho)=\int F(\rho, m) d m$.

Gibbs Measure (Consistency)

These measures are consistent if f satisfies a kinetic equation (FR and Ouaki (2022)).
Set

$$
\alpha\left(\rho_{-}, \rho_{+}\right)=\left(\rho_{+}^{2}-\rho_{-}^{2}\right) /\left(\rho_{+}^{1}-\rho_{-}^{1}\right),
$$

for the slope of $\rho_{+}-\rho_{-}$, so that we can choose $\tau=(-\alpha, 1)$. Put

$$
F=\tau f=(-\alpha f, f), \quad F^{\perp}=(f, \alpha f) .
$$

Kinetic Equation:
$\operatorname{div}\left(F_{(}\left(\rho_{-}, \rho_{+}\right)\right)=\left(F_{-}^{-} * F\right)\left(\rho_{-}, \rho_{+}\right)-F^{-} \cdot\left(A(F)\left(\rho_{+}\right)-A(F)\left(\rho_{-}\right)\right)$,

Gibbs Measure (Consistency)

These measures are consistent if f satisfies a kinetic equation (FR and Ouaki (2022)).
Set

$$
\alpha\left(\rho_{-}, \rho_{+}\right)=\left(\rho_{+}^{2}-\rho_{-}^{2}\right) /\left(\rho_{+}^{1}-\rho_{-}^{1}\right),
$$

for the slope of $\rho_{+}-\rho_{-}$, so that we can choose $\tau=(-\alpha, 1)$. Put

$$
F=\tau f=(-\alpha f, f), \quad F^{\perp}=(f, \alpha f) .
$$

Kinetic Equation:

$$
\operatorname{div}\left(F\left(\rho_{-}, \rho_{+}\right)\right)=\left(F^{\perp} * F\right)\left(\rho_{-}, \rho_{+}\right)-F^{\perp} \cdot\left(A(F)\left(\rho_{+}\right)-A(F)\left(\rho_{-}\right)\right),
$$

Gibbs Measure (Consistency)

These measures are consistent if f satisfies a kinetic equation (FR and Ouaki (2022)).
Set

$$
\alpha\left(\rho_{-}, \rho_{+}\right)=\left(\rho_{+}^{2}-\rho_{-}^{2}\right) /\left(\rho_{+}^{1}-\rho_{-}^{1}\right),
$$

for the slope of $\rho_{+}-\rho_{-}$, so that we can choose $\tau=(-\alpha, 1)$. Put

$$
F=\tau f=(-\alpha f, f), \quad F^{\perp}=(f, \alpha f) .
$$

Kinetic Equation:

$$
\operatorname{div}\left(F\left(\rho_{-}, \rho_{+}\right)\right)=\left(F^{\perp} * F\right)\left(\rho_{-}, \rho_{+}\right)-F^{\perp} \cdot\left(A(F)\left(\rho_{+}\right)-A(F)\left(\rho_{-}\right)\right)
$$

where

$$
A(F)(\rho)=\int F(\rho, m) d m
$$

Back to HJE

So far we have a family ($\nu_{f}: f$ solves the kinetic equation) of probability measures on \mathcal{C}.
Claim This family is invariant under HJ flow in some cases (for example when $\left.H\left(p_{1}, p_{2}\right)=H_{1}\left(p_{1}\right)+H_{2}\left(p_{2}\right)\right)$. The initial $f\left(x, \rho_{,} \rho_{+}\right)$evolves to $f\left(x, t, \rho_{,} \rho_{+}\right)$, which solves another kinetic-like PDE of similar flavor.

Back to HJE

So far we have a family ($\nu_{f}: f$ solves the kinetic equation) of probability measures on \mathcal{C}.
Claim This family is invariant under HJ flow in some cases (for example when $\left.H\left(p_{1}, p_{2}\right)=H_{1}\left(p_{1}\right)+H_{2}\left(p_{2}\right)\right)$.
$f\left(x, \rho_{,} \rho_{+}\right)$evolves to $f\left(x, t, \rho, \rho_{+}\right)$, which solves another
kinetic-like PDE of similar flavor.

Back to HJE

So far we have a family ($\nu_{f}: f$ solves the kinetic equation) of probability measures on \mathcal{C}.
Claim This family is invariant under HJ flow in some cases (for example when $\left.H\left(p_{1}, p_{2}\right)=H_{1}\left(p_{1}\right)+H_{2}\left(p_{2}\right)\right)$. The initial $f\left(x, \rho_{,} \rho_{+}\right)$evolves to $f\left(x, t, \rho, \rho_{+}\right)$, which solves another kinetic-like PDE of similar flavor.

