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Motivation
Hamilton-Jacobi PDE
In many models of interest we encounter an interface that
separates different phases and is evolving with time. The
interface at a location x and time t changes with a rate that
depends on (x , t), and the inclination of the interface at that
location. If the interface is represented by a graph of a function
u : Rd × [0,∞)→ R, then a natural model for its evolution is a
Hamilton-Jacobi PDE:

ut = H(x , t ,ux ), u(x ,0) = g(x).

We may also study ρ = ux (almost equivalently)

ρt = (H(x , t , ρ))x .

(In discrete setting some of the variables x , t or u are discrete;
examples SEP, HAD, etc.)
H is often random (hence u is random), and we are interested
in various scaling limits of solutions.
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Examples
H(x , t ,p) = H0(p)−V (x , t) where H0(p) is convex, and formally

V (x , t) =
∑
i∈I

11(x = xi)δsi (t),

where ω = {(xi , si) : i ∈ I} is a Poisson point process.
When H0(p) = 1

2p2, and d = 1, this HJE was studied by
Bakhtin, Cator, Khanin (2014) (existence of invariant
measures).
When H0(p) = |p|, the model is equivalent to Polynuclear
Growth, and is exactly solvable.
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Level sets of u(x , t) = 1,2,3.4 when u(x ,0) = −∞11(x 6= 0).



A Natural Question/Strategy
Write Φt for the the flow of HJE (in other words
u(·, t) = (Φtg)(·)).
Select g (or ∇g) according to a (reasonable) probability
measure µ0. Let us write µt for the law of u(·, t) (or ρ(·, t)) at
time t : µt = Φ∗t µ

0.
Question: Can we find a nice/tractable/explicit evolution
equation for µt?
More Realistic Question: Can we find a familyM of measures
that is invariant under Φ∗t ? Describe Φ∗t onM.
This talk: We describe an invariant family
M =

{
ν(f ) : f kernel

}
with Φ∗t ν(f ) = ν(Ψt (f )), and we describe

the evolution Ψt (f ) when either H(x , t ,p), d = 1, or
H(x , t ,p) = H(p) and g is piecewise linear convex function.
[Kaspar-FR (2016,2019) after a conjecture of
Menon-Srinivasan (2010), FR-Ouaki (2022, 2023), FR (2023)]
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Assumption: General H, d = 1

Given z = (y , s) ∈ Rd+1, by a fundamental solution
W (·; z) : R× (s,∞)→ R associated with z we mean

W (x , t ; z) = sup
∫ t

s
L
(
ξ(θ), θ, ξ̇(θ)

)
dθ,

where the supremum is over

ξ ∈ C1([s, t ];Rd), ξ(s) = y , ξ(t) = x .

and L is the Legendre transform of H in the p-variable:

L(x , t , v) = inf
p

(
p·v+H(x , t ,p)

)
, H(x , t ,p) = sup

v

(
L(x , t , v)−p·v

)
.

We also set M(x , t ; z) = Wx (x , t ; z) for the x-derivative of W .
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Assumption: General H, d = 1

A solution u, subject to an initial condition u(x , s) = u0(x), has
a representation

u(x , t) = sup
y

(
u0(y) + W (x , t ; y , s)

)
, t ≥ s.

We search for a solution of the form

u(x , t) = sup
y∈I

(
g(y) + W (x , t ; y , s)

)
, t ≥ s,

with I a discrete set. Alternatively

ρ(x , t) = Wx (x , t ; y(x , t), s) = M(x , t ; y(x , t), s),

where y(x , t) takes value in the set I.
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Assumption: A Theorem (General H, d = 1 )
If ρ(x , t0) = M(x , t ; y0(x), s, for some t0 > s, and for a Markov
jump process y0 associated with g(x , s, y−, y+), then for t > t0,
we have ρ(x , t) = M(x , t ; y(x , t)), where y(·, t) is a Markov jump
process associated with g(x , t , y−, y+). Assume that the kernel
g(x , t , y−, y+) satisfies the following (kinetic) equation:

gt − (v̂g)x = Q(g) = Q+(g)−Q−(g) = Q+(g)− gL(g),

where

v(x , t , y−, y+) =
H
(
x , t ,M(x , t ; y+, s)

)
− H

(
x , t ,M(x , t ; y−, s)

)
M(x , t ; y+, s)−M(x , t ; y−, s)

,

Q+(g) =

∫ (
v(y∗, y+)− v(y−, y∗)

)
g(y−, y∗)g(y∗, y+) dy∗,

L(g) =
(
A(vg)(y+)−A(vg)(y−)

)
−v(y−, y+)

(
A(g)(y+)−A(g)(y−)

)
.

Here we have not displayed the dependence of our functions
on (x , t) for a compact notation, and

A(h)(y) =

∫ ∞
y

h(y , y∗) dy∗.
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Assumption: H and g Convex

g(x) = sup
ρ

(x · ρ−h(ρ)) =⇒ u(x , t) = sup
ρ

(x · ρ−h(ρ) + tH(ρ)).

Observe that u is convex in (x , t).
Write C0 for the set of piecewise linear convex functions.

g(x) = sup
ρ∈P

(x · ρ−h(ρ)) =⇒ u(x , t) = sup
ρ∈P

(x · ρ−h(ρ) + tH(ρ)),

for a discrete set P. There would be a minimal set P(t) such
that

u(x , t) = sup
ρ∈P(t)

(x · ρ− h(ρ) + tH(ρ)),

s < t =⇒ P(t) ⊆ P(s).
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Gelfand-Kapranov-Zelevinsky:
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triangulations T.
2. When there is an edge between σT and σT′?
When σT and σT′ differ on a subtriagulation: The discrepancy
σS and σS′ are the two possible triangulations of a circuit.
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d = 2:
(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.
In the context of Hamilton-Jacobi equation (i) means the
occurrence of a collision between two vertices of the
corresponding Laguerre tessellation.
In the context of Hamilton-Jacobi equation (ii) means that the
corresponding Laguerre tessellation has a triangular cell, and
this cell collapses to a vertex.
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Hamilton-Jacobi Dynamics

We wish to understand the dynamics of t 7→ Xt and t 7→ Tt .
Without loss of generality we may assume that P is finite.
(Speed of propagation is finite.)
Main Theorem: There are times

t0 = 0 < t1 < · · · < tk < tk+1 =∞,

such that
1. In (ti , ti+1), we have a free motion.
2. At transition

ti− → ti+,

we either have a coagulation or collision.
3. For t > tk , the triangulation associated with ht is very special
(stable). We call it anti-H triangulation.
The definitions will be given shortly.
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Hamilton-Jacobi Dynamics: Free Motion
During a free motion interval:
u∗: The triangulation (domains of linearity of u∗) Tt stays put,
but the slopes of the graph of u∗ change linearly with a velocity
that will be described shortly.
u: The slopes of the graph stay put. The vertices of Xt travel
according to their velocities. If t , t ′ are two times in the interval,
then the corresponding faces in Xt and Xt ′ are parallel. Angles
do not change.
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Hamilton-Jacobi Dynamics: Coagulation

u∗: Before ti , there is a subtraingulation with d + 1
triangles/simplexes as in the figure:

After ti the d + 1 simplexes are replaced with one simplex (their
union).
u: Before ti one cell in the tessellation Xt is a simplex/triangle.
This cell shrinks before ti . At ti the cell collapses to a vertex.
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Hamilton-Jacobi Dynamics: Coagulation

The red triangle shrinks: Triangles in Xt can only shrink (not
true for other type of cells).



Hamilton-Jacobi Dynamics: Collision
u∗: Before ti , there is a circuit D with d + 2 extreme points.
There are exactly two possible triangulations for this circuit, say
T±. At ti we switch from T− to T+.
u: Before ti there are two vertices that travel according to their
velocities and move towards each other.
At ti , these vertices collide and gain new velocities.
After ti these vertices travel according to their new velocities.
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Hamilton-Jacobi Dynamics: Collision

Two red vertices may get closer or move away from each other.



Hamilton-Jacobi Dynamics: Velocities
Remarks
1. X (ρ) ∩ X (ρ′) is a common face of X (ρ) and X (ρ′).
The vector ρ− ρ′ ⊥ X (ρ) ∩ X (ρ′) (In dimension one this is
known as Rankine-Hugoniot Formula).
It points from X (ρ′) side to X (ρ) side (this is entropy
condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is
associated with a vertex x(T ) = x t (T ) that is uniquely
determined from solving

x t (T ) · (ρ− ρ′) = ht (ρ)− ht (ρ′), ρ, ρ′ ∈ T .

3. The velocity of x t (T ) is −v(T ), where v(T ) is the unique
solution of the linear system

v(T ) · (ρ− ρ′) = H(ρ)− H(ρ′), ρ, ρ′ ∈ T .

Moral: v is a vertex in the tessellation X(H).
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Hamilton-Jacobi Dynamics: Circuits

If R is a circuit, then there exists a function c : R → (0,∞) and
a decomposition R = R− ∪ R+ such that∑

m∈R±
c(m) = 1,

a :=
∑

m∈R−
c(m)m =

∑
m∈R+

c(m)m.
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Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

T±(R) =
{

R \ {m} : m ∈ R∓
}
.

Choose ± so that

Ĥ(R) =
∑

m∈R+

c(m)H(m)−
∑

m∈R−
c(m)H(m) ≥ 0.

In this way the restriction of H to R is associated with the
triangulation T−(R).
If two triangulations T and T′ are vertices of an edge of the
secondary polytope, then they differ only on a circuit R.
We call the edge positive if T→ T′ means switching from T−(R)
to T+(R).
In the HJ dynamics we can only jump across a positive edge at
ti .



Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

T±(R) =
{

R \ {m} : m ∈ R∓
}
.

Choose ± so that
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Hamilton-Jacobi Dynamics: Coagulation/Collision

1. The time of a coagulation of a shrinking f : R → R:

τ =
f̂ (R)

Ĥ(R)
.

2. If f : R → R, and f̂ (R) < 0, then the triangulation induced by
f is T+(R) and there will be no collision.
3. If f : R → R, and f̂ (R) > 0, then the triangulation induced by
f is T−(R), and collision occurs at

τ =
f̂ (R)

Ĥ(R)
.
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Measures on Laguerre Tessellations

Goal: We wish to construct a family {ν(f )} of probability
measures on C for a given kernel f (x , ρ−, ρ+); x ∈ Rd , ρ± ∈ Rd .
Here f (x , ρ−, ρ+) is a rate at which ρ− switches to ρ+ at x .
The measure ν = ν(f ) is a Gibbs-like measure.
Remark: Assume d = 2. Let C(ρ−) and C(ρ+) be two adjacent
cells. Choose τ(ρ−, ρ+) a vector in the direction of the common
edge.

τ(ρ−, ρ+) · (ρ+ − ρ−) = 0

The vector ρ+ − ρ− points from the ρ−-side to the ρ+-side
(convexity).



Measures on Laguerre Tessellations

Goal: We wish to construct a family {ν(f )} of probability
measures on C for a given kernel f (x , ρ−, ρ+); x ∈ Rd , ρ± ∈ Rd .
Here f (x , ρ−, ρ+) is a rate at which ρ− switches to ρ+ at x .
The measure ν = ν(f ) is a Gibbs-like measure.
Remark: Assume d = 2. Let C(ρ−) and C(ρ+) be two adjacent
cells. Choose τ(ρ−, ρ+) a vector in the direction of the common
edge.

τ(ρ−, ρ+) · (ρ+ − ρ−) = 0

The vector ρ+ − ρ− points from the ρ−-side to the ρ+-side
(convexity).



Measures on Laguerre Tessellations

Goal: We wish to construct a family {ν(f )} of probability
measures on C for a given kernel f (x , ρ−, ρ+); x ∈ Rd , ρ± ∈ Rd .
Here f (x , ρ−, ρ+) is a rate at which ρ− switches to ρ+ at x .
The measure ν = ν(f ) is a Gibbs-like measure.
Remark: Assume d = 2. Let C(ρ−) and C(ρ+) be two adjacent
cells. Choose τ(ρ−, ρ+) a vector in the direction of the common
edge.

τ(ρ−, ρ+) · (ρ+ − ρ−) = 0

The vector ρ+ − ρ− points from the ρ−-side to the ρ+-side
(convexity).



Measures on Laguerre Tessellations

Goal: We wish to construct a family {ν(f )} of probability
measures on C for a given kernel f (x , ρ−, ρ+); x ∈ Rd , ρ± ∈ Rd .
Here f (x , ρ−, ρ+) is a rate at which ρ− switches to ρ+ at x .
The measure ν = ν(f ) is a Gibbs-like measure.
Remark: Assume d = 2. Let C(ρ−) and C(ρ+) be two adjacent
cells. Choose τ(ρ−, ρ+) a vector in the direction of the common
edge.

τ(ρ−, ρ+) · (ρ+ − ρ−) = 0

The vector ρ+ − ρ− points from the ρ−-side to the ρ+-side
(convexity).



Measures on Laguerre Tessellations

Goal: We wish to construct a family {ν(f )} of probability
measures on C for a given kernel f (x , ρ−, ρ+); x ∈ Rd , ρ± ∈ Rd .
Here f (x , ρ−, ρ+) is a rate at which ρ− switches to ρ+ at x .
The measure ν = ν(f ) is a Gibbs-like measure.
Remark: Assume d = 2. Let C(ρ−) and C(ρ+) be two adjacent
cells. Choose τ(ρ−, ρ+) a vector in the direction of the common
edge.

τ(ρ−, ρ+) · (ρ+ − ρ−) = 0

The vector ρ+ − ρ− points from the ρ−-side to the ρ+-side
(convexity).



Measures on Laguerre Tessellations

Goal: We wish to construct a family {ν(f )} of probability
measures on C for a given kernel f (x , ρ−, ρ+); x ∈ Rd , ρ± ∈ Rd .
Here f (x , ρ−, ρ+) is a rate at which ρ− switches to ρ+ at x .
The measure ν = ν(f ) is a Gibbs-like measure.
Remark: Assume d = 2. Let C(ρ−) and C(ρ+) be two adjacent
cells. Choose τ(ρ−, ρ+) a vector in the direction of the common
edge.

τ(ρ−, ρ+) · (ρ+ − ρ−) = 0

The vector ρ+ − ρ− points from the ρ−-side to the ρ+-side
(convexity).



Measures on Laguerre Tessellations

Goal: We wish to construct a family {ν(f )} of probability
measures on C for a given kernel f (x , ρ−, ρ+); x ∈ Rd , ρ± ∈ Rd .
Here f (x , ρ−, ρ+) is a rate at which ρ− switches to ρ+ at x .
The measure ν = ν(f ) is a Gibbs-like measure.
Remark: Assume d = 2. Let C(ρ−) and C(ρ+) be two adjacent
cells. Choose τ(ρ−, ρ+) a vector in the direction of the common
edge.

τ(ρ−, ρ+) · (ρ+ − ρ−) = 0

The vector ρ+ − ρ− points from the ρ−-side to the ρ+-side
(convexity).



Measures on Laguerre Tessellations

Goal: We wish to construct a family {ν(f )} of probability
measures on C for a given kernel f (x , ρ−, ρ+); x ∈ Rd , ρ± ∈ Rd .
Here f (x , ρ−, ρ+) is a rate at which ρ− switches to ρ+ at x .
The measure ν = ν(f ) is a Gibbs-like measure.
Remark: Assume d = 2. Let C(ρ−) and C(ρ+) be two adjacent
cells. Choose τ(ρ−, ρ+) a vector in the direction of the common
edge.

τ(ρ−, ρ+) · (ρ+ − ρ−) = 0

The vector ρ+ − ρ− points from the ρ−-side to the ρ+-side
(convexity).



Gibbs Measure/Rough Description

1. Build a random tessellation inside a set, say a box.
2.Vary the size of the box. Verify the consistency.
How do we build our tessellation in a box?
(Boundary Condition) Restriction to the boundary is a
one-dimensional tessellation. In a Markovian fashion, build this
tessellation. ρ± determines the separating edge (normal to
ρ+ − ρ−). These edges intersect inside the box.
Important Point A choice of τ(ρ−, ρ+) (normal to ρ+ − ρ−) gives
an orientation to edges.
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Gibbs Measure/Rough Description

(Interior Construction) Inside the box, create more vertices: An
edge may branch off to two edges.
(Boundary Condition, More Details) Move counter-clockwise
with speed one, and change from ρ− to ρ+ at point x with rate

[τ(ρ−, ρ+) · n(x)]+f (x , ρ−, ρ+),

where n(x) is the inward unit normal at x .
How do we resolve the intersection of edges inside the box?
This can be achieved if we assume

f (x , ρ−, ρ+) > 0 =⇒ τ(ρ−, ρ+) points upward

Start from jump points on the boundary, and move them inside
the box with unit speed in x2 direction. These points are only at
the bottom or the sides of the box.Think of x2 as time.
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Gibbs Measure



Gibbs Measure

(Coalesence) Before collision of edges:
Edge 1: separating C(ρ−) from C(ρ∗)
Edge 2: separating C(ρ∗) from C(ρ+)
After collision we have one edge separating C(ρ−) from C(ρ+)
(Interior Dynamics/Splitting) (x2 is treated as time) Before
splitting:
One edge separating C(ρ−) from C(ρ+)
After fragmentation: two edges.
Edge 1: separating C(ρ−) from C(ρ∗)
Edge 2: separating C(ρ∗) from C(ρ+)
Splitting rate:

σ(ρ−, ρ∗, ρ+)−
f (x , ρ−, ρ∗)f (x , ρ∗, ρ+)

f (x , ρ−, ρ+)

σ is expressed in terms of τ(ρ−, ρ∗)− τ(ρ∗, ρ+).
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Gibbs Measure (Consistency)

These measures are consistent if f satisfies a kinetic equation
(FR and Ouaki (2022)).
Set

α(ρ−, ρ+) = (ρ2
+ − ρ2

−)/(ρ1
+ − ρ1

−),

for the slope of ρ+− ρ−, so that we can choose τ = (−α,1). Put

F = τ f = (−αf , f ), F⊥ = (f , αf ).

Kinetic Equation:

div(F (ρ−, ρ+)) = (F⊥∗F )(ρ−, ρ+)−F⊥ ·(A(F )(ρ+)−A(F )(ρ−)),

where
A(F )(ρ) =

∫
F (ρ,m)dm.
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Back to HJE

So far we have a family (νf : f solves the kinetic equation) of
probability measures on C.
Claim This family is invariant under HJ flow in some cases (for
example when H(p1,p2) = H1(p1) + H2(p2)). The initial
f (x , ρ,ρ+) evolves to f (x , t , ρ,ρ+), which solves another
kinetic-like PDE of similar flavor.
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