The periodic PNG model is solvable

Eric Cator

Joint work with Pablo Ferrari
Radboud Universiteit Nijmegen

Periodic PNG model

State space

State space is given by

$$
E=\{(X, Y)|X, Y \subset[0, L],|X|<+\infty,|Y|<+\infty\}
$$

Topology induced by $\Delta_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in[0, L]^{n} \mid x_{1}<\ldots<x_{n}\right\}$.

Dynamics

Positive particles move at unit speed to the right, negative move to the left, annihilate each other when they meet. Pairs "born" according to Poisson process on $[0, L] \times[0, \infty)$ with intensity 2.

Periodic PNG model

Stationary measure

Theorem: Independent Poisson is stationary

X is realisation of Poisson process on $[0, L]$ with intensity λ, Y with intensity $1 / \lambda$, independent. This distribution is stationary for the periodic PNG.

Proof:

$$
\theta_{h} X=\{x+h \mid x \in X\}
$$

where we calculate modulo L.

$$
\begin{aligned}
& \mathbb{P}\left(X_{h}=x, Y_{h}=y\right)=\mathbb{P}\left(X_{0}=\theta_{-h} x, Y_{0}=\theta_{h} y\right)(1-2 h L)+ \\
& \frac{1}{L^{2}} \int_{0}^{L} \int_{u}^{u+2 h} \mathbb{P}\left(X_{0}=\theta_{-h} x \cup u, Y_{0}=\theta_{h} y \cup v\right) d v d u+o(h) .
\end{aligned}
$$

Stationary measure

Proof

Suppose $|x|=m$ and $|y|=n$. We see that

$$
\mathbb{P}\left(X_{0}=\theta_{-h} x, Y_{0}=\theta_{h} y\right)=\mathbb{P}\left(X_{0}=x, Y_{0}=y\right)
$$

and

$$
\begin{array}{rl}
\frac{1}{L^{2}} \int_{0}^{L} \int_{u}^{u+2 h} & \mathbb{P}\left(X_{0}=\theta_{-h} x \cup u, Y_{0}=\theta_{h} y \cup v\right) d v d u= \\
& \frac{2 h L}{L^{2}} \mathbb{P}\left(X_{0}=x, Y_{0}=y\right)(m+1)(n+1) \frac{\lambda L}{m+1} \frac{L / \lambda}{n+1}
\end{array}
$$

So the $O(h)$ terms cancel.

Stationary measure

Ergodic components

Clearly the dynamic preserves the difference $|X|-|Y|$. Therefore, if we condition the independent Poisson processes so that $|X|-|Y|=k$ (for some $k \in \mathbb{Z}$), that will also be a stationary measure. These conditioned measures do not depend on λ !

Poisson-squared distribution

Suppose $X, Y \sim \operatorname{Pois}(L)$ independent. Define

$$
p_{L}(k)=\mathbb{P}(X=k \mid X=Y)
$$

So for integer $k \geq 0$

$$
p_{L}(k)=\frac{L^{2 k}}{(k!)^{2}} \cdot \frac{1}{Z_{L}}, \quad Z_{L}=\sum_{k=0}^{\infty} \frac{L^{2 k}}{(k!)^{2}}
$$

Dual points

Dual points

Theorem: Reversibility

(X_{0}, Y_{0}) independent Poisson, rate λL and L / λ resp. The dual points in $[0, L] \times[0, T]$ form a Poisson process of intensity 2 , independent of $\left(X_{T}, Y_{T}\right)$.

Proof:

Choose $(x, y)=\left(\left(x_{1}, \ldots, x_{m}\right),\left(y_{1}, \ldots, y_{n}\right)\right)$. Then

$$
\begin{aligned}
\mathbb{P}(\text { dual in } & {\left.[a, b] \times[T-h, T] \mid\left(X_{T}, Y_{T}\right)=(x, y)\right)=} \\
& \frac{\mathbb{P}\left(\left(X_{T-h}, Y_{T-h}\right)=\left(\theta_{-h} x, \theta_{h} y\right)\right)}{\mathbb{P}\left(\left(X_{T}, Y_{T}\right)=(x, y)\right)} \\
& \cdot \frac{\lambda L}{m+1} \frac{L / \lambda}{n+1} \cdot(m+1)(n+1) \frac{b-a}{L} \frac{2 h}{L}+o(h) \\
& =2(b-a) h+o(h) . \square
\end{aligned}
$$

Same number of negative and positive particles

Paths are rings

Consider particles at fixed time. Each positive particle is linked to a specific negative particle to the right, and each negative particle is linked to a specific positive particle to the right. In this way, the paths form closed rings.

Number of rings

Poisson-squared distribution

Moments

Modified Bessel function of the first kind:

$$
I_{\alpha}(x)=\sum_{n=0}^{\infty} \frac{1}{n!\cdot \Gamma(n+\alpha+1)}\left(\frac{x}{2}\right)^{2 n+\alpha} .
$$

Suppose $W \sim \operatorname{Pois}^{2}(L)$. Then $Z_{L}=I_{0}(2 L)$ and

$$
\begin{aligned}
\mathbb{E}(W) & =L \cdot I_{-1}(2 L) / Z_{L} \\
\mathbb{E}\left(W^{2}\right) & =L^{2}
\end{aligned}
$$

Last equation is relatively simple because of the factor $(k!)^{2}$.

Number of rings

Expected number of rings

Stationary process: for small h
expected number of rings through $\{0\} \times[t, t+h]=$ $\#+$ particles in $[L-h, L] \times\{t\}+\#$-particles in $[0, h] \times\{t\}$

If $W \sim \operatorname{Pois}^{2}(L)$,
Expected numer of rings in $[0, T]=\frac{2 T \mathbb{E}(W)}{L}=2 T \frac{I_{-1}(2 L)}{I_{0}(2 L)}$.

Distribution of the rings

Number of minima in a ring
Define N as the number of minima in random ring in the stationary case. These correspond to the Poisson points. Therefore:

$$
\mathbb{E}(N)=\frac{\text { Poisson points }}{\text { rings }}=\frac{L^{2}}{\mathbb{E}(W)}=\frac{\mathbb{E}\left(W^{2}\right)}{\mathbb{E}(W)}
$$

Distribution of the rings

Number of minima in a ring

Define N as the number of minima in random ring in the stationary case. These correspond to the Poisson points. Therefore:

$$
\mathbb{E}(N)=\frac{\text { Poisson points }}{\text { rings }}=\frac{L^{2}}{\mathbb{E}(W)}=\frac{\mathbb{E}\left(W^{2}\right)}{\mathbb{E}(W)}
$$

Size biased squared Poisson

The number of minima in a random ring, N, has a size-biased squared Poisson distribution with parameter L.

$$
\mathbb{P}(N=k)=\frac{k L^{2 k}}{(k!)^{2}} \cdot \frac{1}{L \cdot I_{-1}(2 L)}=: p_{L}^{*}(k)
$$

Distribution of rings

Simulation results

Distribution of rings

Simulation results

Distribution of rings

Statespace of rings: E

Distribution of rings

Statespace of rings: E

A path $\sigma \in E$ has three features: $\sigma_{N} \geq 1$, the number of minima, and if $\sigma_{N} \geq 2$

$$
\sigma_{x}=\left(\sigma_{x, 1}, \ldots, \sigma_{x, \sigma_{N}-1}\right) \text { and } \sigma_{y}=\left(\sigma_{y, 1}, \ldots, \sigma_{y, \sigma_{N}-1}\right)
$$

$\Phi(\sigma)$ is the corresponding ring in the cylinder, starting with a minimum at $(0,0)$. The other minima (if any) satisfy

$$
P_{i}=\frac{1}{2}\left(\sigma_{x, i}+\sigma_{y, i}, \sigma_{y, i}-\sigma_{x, i}\right) .
$$

Note Φ has Jacobian equal to $2^{-\left(\sigma_{N}-1\right)}$.

Distribution of rings

Markov chain on E

We define a Markov chain on E : start with $\sigma_{0} \in E$. Consider $R_{0}=\Phi\left(\sigma_{0}\right)$ and Poisson process above $\Phi(\sigma)$: find next ring R_{1}. To go back, pick a minimum of R_{1} at random, translate it to $(0,0)$ and apply $\Phi^{-1}: \sigma_{1}=\Phi^{*}\left(R_{1}\right)$.

Distribution of rings

Transition kernel

Dominating measure on $E=\sqcup_{n=0}^{\infty}\left(\Delta_{n} \times \Delta_{n}\right)$ is ν, with

$$
\nu=\sum_{i=0}^{\infty} \nu_{n} \text { and } \nu_{n}(d x d y)=L^{-2 n}(n!)^{2} d x d y
$$

Transition kernel $K: E \times E \rightarrow[0, \infty)$ satisfies

$$
\forall \sigma \in E: \int_{E} K(\sigma, \tau) \nu(d \tau)=1
$$

On the cylinder

For two rings in the cylinder $[0, L] \times \mathbb{R}, R_{0} \leq R_{1}$, define $A\left(R_{0}, R_{1}\right)$ as the size of the area between the two rings. If $R_{0} \not \leq R_{1}$, $A\left(R_{0}, R_{1}\right)=+\infty$. Fix R_{0}, denote the next random ring by R_{1}. Suppose ring Q has n minima.

Distribution of rings

Transition kernel

Choose $\sigma, \tau \in E . \tau_{N}=n$ and $d z$ is neighbourhood of τ in $\Delta_{n-1} \times \Delta_{n-1}$. Define $R_{0}=\Phi(\sigma)$ and R_{1} as the next random ring.

$$
\begin{aligned}
& \mathbb{P}\left(\Phi^{*}\left(R_{1}\right) \in \tau+d z \mid \sigma\right)=\frac{1}{\tau_{N}} \iint e^{-2 A(\Phi(\sigma), \Phi(\tau)+(x, t))} d x d t . \\
& \cdot 2^{\tau_{n}-1} \cdot\left(\frac{1}{2}\right)^{\tau_{N}-1} d x_{1} \ldots d x_{\tau_{N}-1} d y_{1} \ldots d y_{\tau_{N}-1} \\
& K(\sigma, \tau)=\iint e^{-2 A(\Phi(\sigma), \Phi(\tau)+(x, t))} d x d t \cdot \frac{1}{\tau_{N}} \cdot \frac{L^{2\left(\tau_{N}-1\right)}}{\left(\left(\tau_{N}-1\right)!\right)^{2}}
\end{aligned}
$$

Distribution of rings

Stationary distribution

Suppose $\sigma \sim f$, with f a density on E with respect to ν. Find a function

$$
K^{*}: E \times E \rightarrow[0, \infty)
$$

such that
(1) $\int_{E} K^{*}(\sigma, \tau) \nu(d \tau)=1$
(2) $\forall \sigma, \tau \in E: K(\sigma, \tau) f(\sigma)=K^{*}(\tau, \sigma) f(\tau)$.

Then f is the stationary measure for K (and for K^{*}).

Reverse process

Take K^{*} the transition kernel corresponding to the time-reversed process on the cylinder. Take

$$
f(\sigma)=p_{L}^{*}\left(\sigma_{N}\right)
$$

Distribution of rings

Reverse process

$$
\begin{aligned}
K^{*}(\tau, \sigma) & =\iint e^{-2 A(\Phi(\sigma)-(x, t), \Phi(\tau))} d x d t \cdot \frac{1}{\sigma_{N}} \cdot \frac{L^{2\left(\sigma_{N}-1\right)}}{\left(\left(\sigma_{N}-1\right)!\right)^{2}} \\
& =\iint e^{-2 A(\Phi(\sigma), \Phi(\tau)+(x, t))} d x d t \cdot \frac{1}{\sigma_{N}} \cdot \frac{L^{2\left(\sigma_{N}-1\right)}}{\left(\left(\sigma_{N}-1\right)!\right)^{2}} \\
& =\iint e^{-2 A(\Phi(\sigma), \Phi(\tau)+(x, t))} d x d t \cdot \sigma_{N} \cdot \frac{L^{2 \sigma_{N}}}{\left(\sigma_{N}!\right)^{2}} \cdot L^{-2}
\end{aligned}
$$

Detailed balance

$$
\frac{K(\sigma, \tau)}{K^{*}(\tau, \sigma)}=\frac{p_{L}^{*}\left(\tau_{N}\right) L^{-2}}{p_{L}^{*}\left(\sigma_{N}\right) L^{-2}}=\frac{f(\tau)}{f(\sigma)}
$$

