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Periodic PNG model

State space

State space is given by

E = {(X ,Y ) | X ,Y ⊂ [0, L], |X | < +∞, |Y | < +∞}.

Topology induced by ∆n = {(x1, . . . , xn) ∈ [0, L]n | x1 < . . . < xn}.
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Dynamics

Positive particles move at unit speed to the right, negative move to
the left, annihilate each other when they meet. Pairs ”born”
according to Poisson process on [0, L]× [0,∞) with intensity 2.
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Stationary measure

Theorem: Independent Poisson is stationary

X is realisation of Poisson process on [0, L] with intensity λ, Y
with intensity 1/λ, independent. This distribution is stationary for
the periodic PNG.

Proof:

θhX = {x + h | x ∈ X},

where we calculate modulo L.

P(Xh = x ,Yh = y) = P(X0 = θ−hx ,Y0 = θhy)(1− 2hL)+

1

L2

∫ L

0

∫ u+2h

u
P(X0 = θ−hx ∪ u,Y0 = θhy ∪ v)dvdu + o(h).



Stationary measure

Proof

Suppose |x | = m and |y | = n. We see that

P(X0 = θ−hx ,Y0 = θhy) = P(X0 = x ,Y0 = y)

and

1

L2

∫ L

0

∫ u+2h

u
P(X0 = θ−hx ∪ u,Y0 = θhy ∪ v)dvdu =

2hL

L2
P(X0 = x ,Y0 = y)(m + 1)(n + 1)

λL

m + 1

L/λ

n + 1
.

So the O(h) terms cancel.



Stationary measure

Ergodic components

Clearly the dynamic preserves the difference |X | − |Y |. Therefore,
if we condition the independent Poisson processes so that
|X | − |Y | = k (for some k ∈ Z), that will also be a stationary
measure. These conditioned measures do not depend on λ!

Poisson-squared distribution

Suppose X ,Y ∼ Pois(L) independent. Define

pL(k) = P(X = k | X = Y ).

So for integer k ≥ 0

pL(k) =
L2k

(k!)2
· 1

ZL
, ZL =

∞∑
k=0

L2k

(k!)2
.



Dual points
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Dual points

Theorem: Reversibility

(X0,Y0) independent Poisson, rate λL and L/λ resp. The dual
points in [0, L]× [0,T ] form a Poisson process of intensity 2,
independent of (XT ,YT ).

Proof:

Choose (x , y) = ((x1, . . . , xm), (y1, . . . , yn)). Then

P(dual in [a, b]× [T − h,T ] | (XT ,YT ) = (x , y)) =

P((XT−h,YT−h) = (θ−hx , θhy))

P((XT ,YT ) = (x , y))
·

· λL

m + 1

L/λ

n + 1
· (m + 1)(n + 1)

b − a

L

2h

L
+ o(h)

= 2(b − a)h + o(h).�



Same number of negative and positive particles

Paths are rings

Consider particles at fixed time. Each positive particle is linked to
a specific negative particle to the right, and each negative particle
is linked to a specific positive particle to the right. In this way, the
paths form closed rings.
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Number of rings
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Poisson-squared distribution

Moments

Modified Bessel function of the first kind:

Iα(x) =
∞∑
n=0

1

n! · Γ(n + α + 1)

(x
2

)2n+α
.

Suppose W ∼ Pois2(L). Then ZL = I0(2L) and

E(W ) = L · I−1(2L)/ZL.

E(W 2) = L2.

Last equation is relatively simple because of the factor (k!)2.



Number of rings

Expected number of rings

Stationary process: for small h

expected number of rings through {0} × [t, t + h] =

#+particles in [L− h, L]× {t}+ #–particles in [0, h]× {t}

If W ∼ Pois2(L),

Expected numer of rings in [0,T ] =
2TE(W )

L
= 2T

I−1(2L)

I0(2L)
.

t

t+h

0 t

t+h

0



Distribution of the rings

Number of minima in a ring

Define N as the number of minima in random ring in the stationary
case. These correspond to the Poisson points. Therefore:

E(N) =
Poisson points

rings
=

L2

E(W )
=

E(W 2)

E(W )
.

Size biased squared Poisson

The number of minima in a random ring, N, has a size-biased
squared Poisson distribution with parameter L.

P(N = k) =
kL2k

(k!)2
· 1

L · I−1(2L)
=: p∗L(k).
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Distribution of rings

Simulation results

Histogram of Nmin
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Distribution of rings

Statespace of rings: E

Φ



Distribution of rings

Statespace of rings: E

A path σ ∈ E has three features: σN ≥ 1, the number of minima,
and if σN ≥ 2

σx = (σx ,1, . . . , σx ,σN−1) and σy = (σy ,1, . . . , σy ,σN−1).

Φ(σ) is the corresponding ring in the cylinder, starting with a
minimum at (0, 0). The other minima (if any) satisfy

Pi =
1

2
(σx ,i + σy ,i , σy ,i − σx ,i ).

Note Φ has Jacobian equal to 2−(σN−1).



Distribution of rings

Markov chain on E

We define a Markov chain on E : start with σ0 ∈ E . Consider
R0 = Φ(σ0) and Poisson process above Φ(σ): find next ring R1.
To go back, pick a minimum of R1 at random, translate it to (0, 0)
and apply Φ−1: σ1 = Φ∗(R1).



Distribution of rings

Transition kernel

Dominating measure on E = t∞n=0(∆n ×∆n) is ν, with

ν =
∞∑
i=0

νn and νn(dxdy) = L−2n(n!)2dxdy .

Transition kernel K : E × E → [0,∞) satisfies

∀σ ∈ E :

∫
E
K (σ, τ)ν(dτ) = 1.

On the cylinder

For two rings in the cylinder [0, L]× R, R0 ≤ R1, define A(R0,R1)
as the size of the area between the two rings. If R0 6≤ R1,
A(R0,R1) = +∞. Fix R0, denote the next random ring by R1.
Suppose ring Q has n minima.

P(R1 ∈ Q + dz | R0) = e−A(R0,Q)dx1 . . . dxndy1 . . . dyn.



Distribution of rings

Transition kernel

Choose σ, τ ∈ E . τN = n and dz is neighbourhood of τ in
∆n−1 ×∆n−1. Define R0 = Φ(σ) and R1 as the next random ring.

P(Φ∗(R1) ∈τ + dz | σ) =
1

τN

∫ ∫
e−2A(Φ(σ),Φ(τ)+(x ,t))dxdt·

· 2τn−1 ·
(

1

2

)τN−1

dx1 . . . dxτN−1dy1 . . . dyτN−1.

K (σ, τ) =

∫ ∫
e−2A(Φ(σ),Φ(τ)+(x ,t))dxdt · 1

τN
· L2(τN−1)

((τN − 1)!)2
.



Distribution of rings

Stationary distribution

Suppose σ ∼ f , with f a density on E with respect to ν. Find a
function

K ∗ : E × E → [0,∞)

such that

1
∫
E K ∗(σ, τ)ν(dτ) = 1

2 ∀σ, τ ∈ E : K (σ, τ)f (σ) = K ∗(τ, σ)f (τ).

Then f is the stationary measure for K (and for K ∗).

Reverse process

Take K ∗ the transition kernel corresponding to the time-reversed
process on the cylinder. Take

f (σ) = p∗L(σN).



Distribution of rings

Reverse process

K ∗(τ, σ) =

∫ ∫
e−2A(Φ(σ)−(x ,t),Φ(τ))dxdt · 1

σN
· L2(σN−1)

((σN − 1)!)2

=

∫ ∫
e−2A(Φ(σ),Φ(τ)+(x ,t))dxdt · 1

σN
· L2(σN−1)

((σN − 1)!)2

=

∫ ∫
e−2A(Φ(σ),Φ(τ)+(x ,t))dxdt · σN ·

L2σN

(σN !)2
· L−2.

Detailed balance

K (σ, τ)

K ∗(τ, σ)
=

p∗L(τN)L−2

p∗L(σN)L−2
=

f (τ)

f (σ)
.


