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Periodic PNG model

State space

State space is given by
E={(X,Y)[X,Y C0,L],[X] < +o0,|Y| < +o0}.

Topology induced by A, = {(x1,...,xn) €[0,L]" | x1 < ... < xp}.
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Positive particles move at unit speed to the right, negative move to
the left, annihilate each other when they meet. Pairs "born”
according to Poisson process on [0, L] x [0, 00) with intensity 2.
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Stationary measure

Theorem: Independent Poisson is stationary

X is realisation of Poisson process on [0, L] with intensity \, Y
with intensity 1/, independent. This distribution is stationary for
the periodic PNG.

OpX = {x+ h|x e X},

where we calculate modulo L.
P(Xp = x, Y =y) =P(Xo = 0_px, Yo = Ony)(1 — 2hL)+

1 L put2h
2 / / P(Xo = 0_px U u, Yo = Opy U v)dvdu + o(h).
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Stationary measure

Suppose |[x| = m and |y| = n. We see that

P(Xo =0_px, Yo =0py) =P(Xo=x, Yo =y)

and
1 L u+2h
p/ / P(Xo = 0_pxUwu, Yo = Opy Uv)dvdu =
0 u
2

oL AL L/A

So the O(h) terms cancel.




Stationary measure

Ergodic components

Clearly the dynamic preserves the difference |X| — |Y|. Therefore,
if we condition the independent Poisson processes so that

|X| —|Y| = k (for some k € Z), that will also be a stationary
measure. These conditioned measures do not depend on !
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Poisson-squared distribution
Suppose X, Y ~ Pois(L) independent. Define

pL(k) =P(X =k | X =Y).

So for integer kK > 0




Dual points
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Dual points

Theorem: Reversibility

(Xo, Yo) independent Poisson, rate AL and L/ resp. The dual
points in [0, L] x [0, T] form a Poisson process of intensity 2,
independent of (X7, Y7).

Choose (x,y) = ((x1;---sXm); (V1,---,¥n))- Then

P(dual in [a,b] x [T — h, T] | (X7, YT) = (X,¥)) =
]P((XT_/,, YT—h) = (H_hX, th )
P((X7, Y1) = (x,¥))
AL L/X
mEintl -(m+1)(n+1)

=2(b—a)h+o(h).O

b—a2h
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— tolh)




Same number of negative and positive particles

Paths are rings

Consider particles at fixed time. Each positive particle is linked to
a specific negative particle to the right, and each negative particle
is linked to a specific positive particle to the right. In this way, the
paths form closed rings.
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Poisson-squared distribution

Modified Bessel function of the first kind:

fa(x) = Z n'-T(n i a+1) (2)2%&’

Suppose W ~ Pois?(L). Then Z;, = Ip(2L) and

E(W)=L-11(2L)/Z.
E(W?) = L2

Last equation is relatively simple because of the factor (k!).




Number of rings

Expected number of rings

Stationary process: for small h

expected number of rings through {0} x [t,t + h] =
#+particles in [L — h, L] x {t} + #-—particles in [0, h] x {t}

If W ~ Pois?(L),

L _2TE(W)  _1-1(2L)

Expected numer of rings in [0, T| = 1 =2T bR

t+h--------- P Pttt t+h--------- ittty
N t N



Distribution of the rings

Number of minima in a ring

Define N as the number of minima in random ring in the stationary
case. These correspond to the Poisson points. Therefore:
Poisson points L2 E(W?)

BN = e E(W)  E(W)




Distribution of the rings

Number of minima in a ring

Define N as the number of minima in random ring in the stationary
case. These correspond to the Poisson points. Therefore:
Poisson points L2 E(W?)

BN = e E(W)  E(W)

Size biased squared Poisson

The number of minima in a random ring, N, has a size-biased
squared Poisson distribution with parameter L.

kL2k 1

PIN =K =Gz T — PEk):




Distribution of rings

Simulation results

Histogram of Nmin
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Distribution of rings

Simulation results
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Distribution of rings

Statespace of rings: E




Distribution of rings

Statespace of rings: E

A path o € E has three features: opn > 1, the number of minima,
and if oy > 2

ox = (0x1,--,0x0y—1) and oy, = (0y 1, .., 0y 0p—1)-

®(0) is the corresponding ring in the cylinder, starting with a
minimum at (0,0). The other minima (if any) satisfy

Pi = 5(0xi +0y,i,0y,i = 0x,)-

Note & has Jacobian equal to 2~ (ov—1),




Distribution of rings

Markov chain on E

We define a Markov chain on E: start with g € E. Consider

Ro = ®(09p) and Poisson process above ®(o): find next ring R;.
To go back, pick a minimum of Ry at random, translate it to (0, 0)
and apply ®~1: o1 = ®*(Ry).




Distribution of rings

Transition kernel

Dominating measure on E = L% (A, X Ap) is v, with

v= Z vy and v,(dxdy) = L=2"(n!)%dxdy.
i=0

Transition kernel K : E x E — [0, 00) satisfies

Vo € E: /EK(U,T)V(dT) = 1L,

.

On the cylinder

For two rings in the cylinder [0, L] x R, Ry < Ry, define A(Ro, R1)
as the size of the area between the two rings. If Ry £ Ry,

A(Ro, R1) = +00. Fix Rp, denote the next random ring by R;.
Suppose ring @ has n minima.




Distribution of rings

Transition kernel

Choose o, 7 € E. 7y = n and dz is neighbourhood of 7 in
Ap_1 X Ap_1. Define Ry = ®(0) and Ry as the next random ring.

P(O*(Ry) 7 + dz | o) = / / ~2A(9(0).0(r)+(x.0) gy it

1

T7n—1
o1, <§> dxi ... dxmy_1dy1 ... dyr_1.

1 [2(rv—1)
—2A(®(0),P(7)+(x, t))d df - —  —
Ko 7) // I (v =)




Distribution of rings

Stationary distribution

Suppose o ~ f, with f a density on E with respect to v. Find a
function
K*: E x E —[0,00)
such that
Q@ [ K*(o,T)v(dT) =1
Q Vo,7r€ E: K(o,7)f(0) = K*(7,0)f(7).
Then f is the stationary measure for K (and for K*).

Reverse process

Take K* the transition kernel corresponding to the time-reversed
process on the cylinder. Take

f(o) = pion).

.




Distribution of rings

2(on—1
K*(r,0) / / A®(0) (0, 0() gy L. LMY
on ((ony —1)1)?

1 | 2(on—1)
_ e A@(M+ D gy . — . =
// oN ((O’N - 1)')2

L20’N
_ / / &~ 2A) SN+ g - oy - -2
(on!)?

V,

Detailed balance

K(o, ) _ p;:(TN)L_2 f(7)
K*(r,0)  pilon)L=2  f(o)




