Geodesic networks in the directed landscape

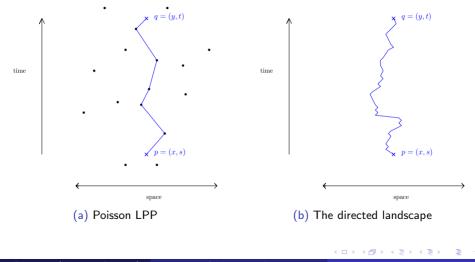
Duncan Dauvergne

University of Toronto

Duncan Dauvergne (University of Toronto)

Bow River, Banff

The directed landscape



Duncan Dauvergne (University of Toronto)

May 30, 2023 3 / 22

The directed landscape L is a random real-valued continuous function with domain ℝ⁴_↑ = {(p, q) = (x, s; y, t) : s < t}.

- The directed landscape L is a random real-valued continuous function with domain ℝ⁴_↑ = {(p, q) = (x, s; y, t) : s < t}.
- \mathcal{L} is a directed metric: $\mathcal{L}(p,q) \ge \mathcal{L}(p,r) + \mathcal{L}(r,q)$

- The directed landscape \mathcal{L} is a random real-valued continuous function with domain $\mathbb{R}^4_{\uparrow} = \{(p, q) = (x, s; y, t) : s < t\}.$
- \mathcal{L} is a directed metric: $\mathcal{L}(p,q) \geq \mathcal{L}(p,r) + \mathcal{L}(r,q)$
- $\mathcal{L}(x, s; y, t)$ is Hölder-1/2⁻ (locally Brownian) in x, y but only Hölder-1/3⁻ in s, t

Paths in ${\boldsymbol{\mathcal L}}$

- Paths are now arbitrary continuous functions $\pi : [s, t] \rightarrow \mathbb{R}$.
- We must define length by subdivision. For a function $\pi:[s,t] \rightarrow \mathbb{R}$, let

$$|\pi|_{\mathcal{L}} = \inf_{k \in \mathbb{N}} \inf_{s=r_0 < \cdots < r_k = t} \sum_{i=1}^k \mathcal{L}(\pi(r_{i-1}), r_i; \pi(r_i), r_i)$$

- Paths are now arbitrary continuous functions $\pi : [s, t] \to \mathbb{R}$.
- We must define length by subdivision. For a function $\pi:[s,t] \rightarrow \mathbb{R}$, let

$$|\pi|_{\mathcal{L}} = \inf_{k \in \mathbb{N}} \inf_{s=r_0 < \cdots < r_k = t} \sum_{i=1}^k \mathcal{L}(\pi(r_{i-1}), r_i; \pi(r_i), r_i)$$

• π is a geodesic if $|\pi|_{\mathcal{L}} = \mathcal{L}(\pi(s), s; \pi(t), t)$.

- Paths are now arbitrary continuous functions $\pi : [s, t] \rightarrow \mathbb{R}$.
- We must define length by subdivision. For a function $\pi:[s,t] \rightarrow \mathbb{R}$, let

$$|\pi|_{\mathcal{L}} = \inf_{k \in \mathbb{N}} \inf_{s=r_0 < \cdots < r_k = t} \sum_{i=1}^k \mathcal{L}(\pi(r_{i-1}), r_i; \pi(r_i), r_i)$$

- π is a geodesic if $|\pi|_{\mathcal{L}} = \mathcal{L}(\pi(s), s; \pi(t), t)$.
- For any fixed pair p, q, a.s. there is a unique \mathcal{L} -geodesic from p to q.

- Paths are now arbitrary continuous functions $\pi : [s, t] \to \mathbb{R}$.
- We must define length by subdivision. For a function $\pi : [s, t] \to \mathbb{R}$, let

$$|\pi|_{\mathcal{L}} = \inf_{k \in \mathbb{N}} \inf_{s=r_0 < \cdots < r_k = t} \sum_{i=1}^k \mathcal{L}(\pi(r_{i-1}), r_i; \pi(r_i), r_i)$$

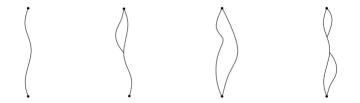
- π is a geodesic if $|\pi|_{\mathcal{L}} = \mathcal{L}(\pi(s), s; \pi(t), t)$.
- For any fixed pair p, q, a.s. there is a unique \mathcal{L} -geodesic from p to q.
- Not true for all p, q!! What happens at these exceptional pairs?

A few possibilities

< E

(日)

• We call the set of all geodesics from *p* to *q* the **geodesic network** from *p* to *q*.



- We call the set of all geodesics from *p* to *q* the **geodesic network** from *p* to *q*.
- A natural goal is to try to classify the different geodesic networks that will show up in the directed landscape.

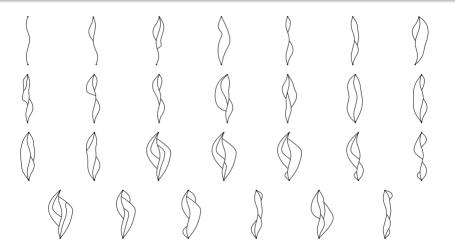
Theorem (D.)

There are 27 geodesic networks in the directed landscape.

Image: A math a math

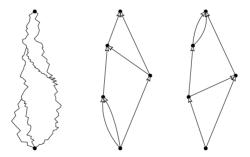
Theorem (D.)

There are 27 geodesic networks in the directed landscape.



The notion of isomorphism for geodesic networks

- We associate to each geodesic network a directed graph
- Two networks are isomorphic if the corresponding directed graphs G, G' are either isomorphic, or else G is isomorphic to the transpose of G'



A network, its graph, and its transpose

The notion of isomorphism for geodesic networks

- We associate to each geodesic network a directed graph: the network graph
- Two networks are isomorphic if their network graphs G, G' are either isomorphic, or else G' is isomorphic to the transpose G^T

Isomorphic networks

• G has exactly one source vertex p and exactly one sink vertex q

- G has exactly one source vertex p and exactly one sink vertex q
- ⁽²⁾ G is finite, planar and loop-free

- G has exactly one source vertex p and exactly one sink vertex q
- \bigcirc G is finite, planar and loop-free
- The induced graph on $V \setminus \{p, q\}$ has no (undirected) cycles.

- **(**) G has exactly one source vertex p and exactly one sink vertex q
- \bigcirc G is finite, planar and loop-free
- The induced graph on $V \setminus \{p, q\}$ has no (undirected) cycles.
- deg(v) = 3 for all $v \in V \setminus \{p, q\}$.

- **(**) G has exactly one source vertex p and exactly one sink vertex q
- \bigcirc G is finite, planar and loop-free
- The induced graph on $V \setminus \{p, q\}$ has no (undirected) cycles.
- deg(v) = 3 for all $v \in V \setminus \{p, q\}$.
- $(a) \deg(p), \deg(q) \leq 3.$

- **(**) G has exactly one source vertex p and exactly one sink vertex q
- \bigcirc G is finite, planar and loop-free
- The induced graph on $V \setminus \{p, q\}$ has no (undirected) cycles.
- deg(v) = 3 for all $v \in V \setminus \{p, q\}$.
- $(a) \deg(p), \deg(q) \leq 3.$

Hausdorff dimensions for geodesic networks

Duncan Dauvergne (University of Toronto)

May 30, 2023 11 / 22

Hausdorff dimensions for geodesic networks

• Define the 1:2:3 distance on \mathbb{R}^4_{\uparrow}

$$d_{1:2:3}((x,s;y,t),(x',s';y',t')) = |t-t'|^{1/3} + |s-s'|^{1/3} + |x-x'|^{1/2} + |y-y'|^{1/2}$$

• Hausdorff dimensions defined used $d_{1:2:3}$ are a proxy for Hausdorff dimensions defined using the 'metric' \mathcal{L} .

Hausdorff dimensions for geodesic networks

• Define the 1:2:3 distance on \mathbb{R}^4_{\uparrow}

$$d_{1:2:3}((x,s;y,t),(x',s';y',t')) = |t-t'|^{1/3} + |s-s'|^{1/3} + |x-x'|^{1/2} + |y-y'|^{1/2}$$

• Hausdorff dimensions defined used $d_{1:2:3}$ are a proxy for Hausdorff dimensions defined using the 'metric' \mathcal{L} .

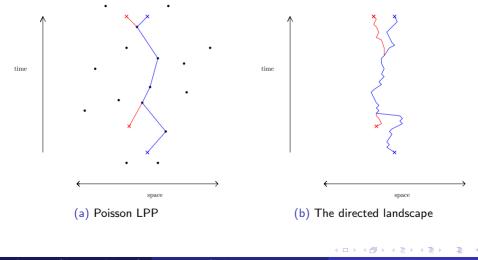
Theorem (D.)

For a graph G = (V, E) satisfying the five rules above, let $N_{\mathcal{L}}(G)$ denote the set of points in \mathbb{R}^4_{\uparrow} whose network graph is isomorphic to G. Then:

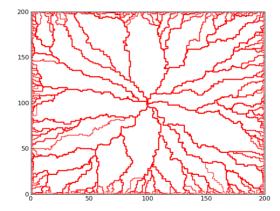
$$\dim_{1:2:3}(N_{\mathcal{L}}(G)) = 12 - \frac{|V| + \deg^2(p) + \deg^2(q)}{2}.$$

If the right-hand side above equals 0, then $N_{\mathcal{L}}(G)$ is countable.

Coalescent Geometry in \mathcal{L}

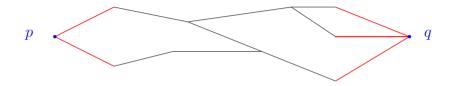


Coalescent Geometry in $\mathcal L$

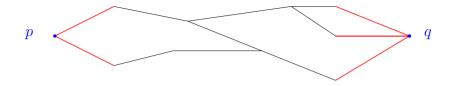


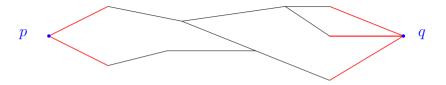
Duncan Dauvergne (University of Toronto)

≣ । < ≣ । May 30, 2023 13 / 22

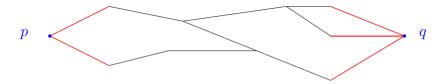


- The ends of the network are special, but the interior is generic
- Rarity of a particular network should be based on the rarity of the endpoint configurations: geodesic stars



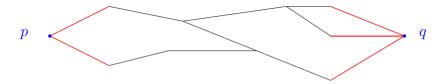


A point p ∈ ℝ² is a geodesic k-star if there are k disjoint geodesics that start at p. Let Star_k be the set of geodesic stars for L.



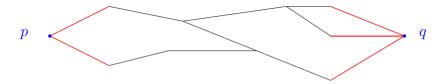
- A point p ∈ ℝ² is a geodesic k-star if there are k disjoint geodesics that start at p. Let Star_k be the set of geodesic stars for L.
- The Hausdorff dimension of $N_{\mathcal{L}}(G)$ should be

 $\dim_{1:2:3}(Star_2) + \dim_{1:2:3}(Star_3)$



- A point p ∈ ℝ² is a geodesic k-star if there are k disjoint geodesics that start at p. Let Star_k be the set of geodesic stars for L.
- The Hausdorff dimension of $N_{\mathcal{L}}(G)$ should be

 $\dim_{1:2:3}(Star_2) + \dim_{1:2:3}(Star_3) - 3.$



- A point p ∈ ℝ² is a geodesic k-star if there are k disjoint geodesics that start at p. Let Star_k be the set of geodesic stars for L.
- The Hausdorff dimension of $N_{\mathcal{L}}(G)$ should be

 $\dim_{1:2:3}(Star_2) + \dim_{1:2:3}(Star_3) - 3.$

• The Hausdorff dimension of the set of geodesic networks of type G whose source and sink vertices have degree k and ℓ should be:

 $\dim_{1:2:3}(\operatorname{Star}_k) + \dim_{1:2:3}(\operatorname{Star}_\ell) - \#(\operatorname{Interior faces})$

Theorem (D.)

Let $\operatorname{Star}_k \subset \mathbb{R}^2$ denote the set of geodesic k-stars for \mathcal{L} . Then:

 $dim(Star_1) = 5, \quad dim(Star_2) = 4, \quad dim(Star_3) = 2, \quad Star_4 = \emptyset.$

Theorem (D.)

Let $\operatorname{Star}_k \subset \mathbb{R}^2$ denote the set of geodesic k-stars for \mathcal{L} . Then:

 $\dim(\mathsf{Star}_1) = 5, \quad \dim(\mathsf{Star}_2) = 4, \quad \dim(\mathsf{Star}_3) = 2, \quad \mathsf{Star}_4 = \emptyset.$

Therefore: the Hausdorff dimension of the set of geodesic networks of type G whose source and sink vertices have degree k and ℓ should be:

$$\dim_{1:2:3}(\text{Star}_k) + \dim_{1:2:3}(\text{Star}_\ell) - \#(\text{Interior faces}) = 12 - \frac{|V| + k^2 + \ell^2}{2}$$

Other models

• Other random continnum planar metrics have a similar coalescence structure, and so we might expect similar results

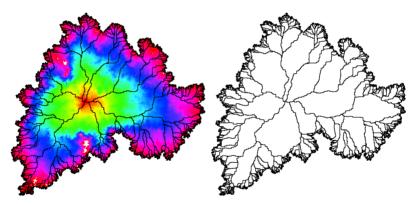


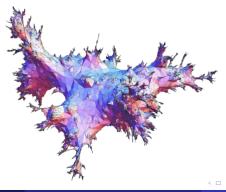
Figure: Geodesics in the Brownian map

The Brownian map and Liouville quantum gravity

• The Brownian map is the metric space scaling limit of uniform random planar maps

The Brownian map and Liouville quantum gravity

- The Brownian map is the metric space scaling limit of uniform random planar maps
- Liouville quantum gravity is a family of metric spaces parametrized by γ ∈ (0,2). Conjectured scaling limits of random planar maps sampled from a biased measure

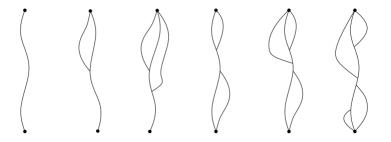


Let X be either the directed landscape, the Brownian map, or a model of Liouville quantum gravity with $\gamma \in (0,2)$.

Let X be either the directed landscape, the Brownian map, or a model of Liouville quantum gravity with $\gamma \in (0, 2)$.

Theorem (Angel-Miermont-Kolesnik, Gwynne, D.)

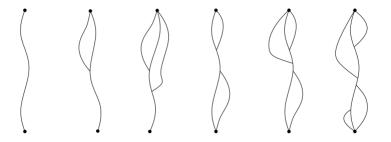
There are exactly 6 dense geodesic networks in X.



Let X be either the directed landscape, the Brownian map, or a model of Liouville quantum gravity with $\gamma \in (0, 2)$.

Theorem (Angel-Miermont-Kolesnik, Gwynne, D.)

There are exactly 6 dense geodesic networks in X.



Let X be either the Brownian map, or a model of Liouville quantum gravity with $\gamma \in (0,2)$.

Conjecture

There are either 27, 28, or 29 geodesic networks in X.

