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The fox and the rabbit

0:1:2 to 1:2:3

σ4/3



First passage percolation

KPZ−→

Scale ↕ n, ↔ n2/3. Limit is a graph of γ : [0, 1] → R

The directed geodesic.



The directed landscape

d(n2/3x , ns; n2/3y , nt) = n(t − s)− n1/3L(x , s; y , t) + error

L: the directed landscape, a universal random plane geometry

−L: ∆ inequality, L(p, p) = 0

L(x , s; y , t) d
=


− (y−x)2

t−s + (t − s)1/3TW , s < t

0 (x , s) = (y , t)

−∞ else

Dauvergne Ortmann V (2023)



DL: the full scaling limit

The same structure as last passage percolation

KPZ−→

description geodesic shape information

Tracy-Widom law none
Airy process 1d marginal, point-to-point
KPZ fixed point 1d marginal, general
directed landscape full law, general



The fox and the rabbit

w Jeremy Quastel and Alejandro Ramirez









Absolute continuity

ξ planar white noise
B: occupation measure on graph of BM on [0, 1]

Find ξn → ξ, and Bn → B independent so that

Zn =
law(ξn + Bn)

law(ξn)
is L1-tight

ξn,Bn: projection to e1, . . . , en, basis of L
2(R2).

But Zn is bounded in L2 since

EZ 2
n = E exp⟨Bn,B

′
n⟩ ≤ E expα(B,B ′) = E exp |N| <∞.



The continuum directed random polymer

Alberts, Khanin, Quastel (2014)

P(CDRP ∈ A|ξ) = law(ξ) ∗ (law(B)|A)
law(ξ)



Class of planar models

∆+ ξ
RWIRE

Random conductances

Parabolic Anderson model

Brownian motion with obstacles

planar stochastic heat equation





Class of planar models for today

∆+ ξ
RWIRE

Random conductances

Parabolic Anderson model

Brownian motion with obstacles

planar stochastic heat equation

We chose ∆ = ∂xx + ∂yy , ξ=planar white noise.



Main Theorem

Let u satisfy the Wick-ordered planar SHE

∂tu = 1
2∆u + u ξ, u(·, 0) = δ0.

Then for any t > 0 and a ∈ R as N → ∞,

P(u((0,N3/2t),Nt)× NeN
2t/2

√
2πt ≤ a) → FKPZ (t, a).



When chaos expansion fails: proof idea

Defining 2d SHE. By analogy, in 2d

u =
law(B2d + ξ)

law(ξ)

B2d : occ. measure on the path planar BM.

L2 iff t < tc . Gagliardo–Nirenberg. But still L
1 tight.

Convergence to KPZ. In our scaling:

path (2d BM) → graph (1d BM)

L1 tightness: technical.



0:1:2 to 1:2:3

w Bálint Vető









The Brownian web distance

Theorem.(Vető, V.) After 0 : 1 : 2 scaling, the discrete web distance
converges to the Brownian web distance.

Arratia (1981), Tóth Werner (1998), Newman Ravishankar Schertzer
(2010), Dumaz Tóth (2013)

integer-valued

number of times you have to switch paths

0 : 1 : 2-scale invariant

no time-reversal symmetry:

for distinct points d(x , s; , y , t) <∞ iff s < t and (y , t) is on the
skeleton.





KPZ limit

Theorem. As m → ∞,

tn + 2zn2/3 − dbr (2tn + 2zn2/3,−tn;R−, 0)

n1/3
→ L(0, 0; z , t)

compactly in law.

Future directions

Random limit shapes

Nonunique geodesics



σ4/3: universality of directed polymers
β = n−α, α < 1

5

solo by Julian Ransford





ξi ,j i.i.d with ψ(λ) = Eeλξi,j , ψ(ϵ) <∞, Var(ξi ,j) = σ2.

Theorem (Ransford) Let βn = n−α, α ∈ (1/5, 1/4). Then

logZn,βn − an

(4β4nn)
1/3

d → σ4/3TWGUE

an = 2n
(
logψ(βn) + log 2 +

σ2β4n
3

)
Alberts Quastel Khanin 2014

Borodin Corwin Remenik 2013, Krishnan Quastel 2018



For k moments matching, need

α >
2

3k + 11

Two moments should suffice for

α >
2

17

A different obstacle at 1/5.



Happy birthday Timo!
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Seppäläinen. Exact limiting shape for a simplified model of first-passage
percolation on the plane, AOP 1998.
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Thank you.


