Symmetries of K3 surfaces

Kasia Budzik, Anne Taormina, Mara Ungureanu, Katrin Wendland, Ida Zadeh

August 2023, Banff

- Moduli space of K3 surfaces and their symmetry groups:
 - Kummer surface $\widetilde{T^4/\mathbb{Z}_2} \quad \Leftarrow \quad$ Kummer construction
 - Kummer-like surface $\widetilde{T^4/\mathbb{Z}_3}$

- Moduli space of K3 surfaces and their symmetry groups:
 - Kummer surface $\widetilde{T^4/\mathbb{Z}_2} \quad \Leftarrow \quad$ Kummer construction
 - Kummer-like surface $\widetilde{T^4/\mathbb{Z}_3}$
- Main tools:
 - Gluing lattices
 - Niemeier lattices

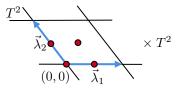
- Moduli space of K3 surfaces and their symmetry groups:
 - Kummer surface $\widetilde{T^4/\mathbb{Z}_2} \quad \Leftarrow \quad$ Kummer construction
 - Kummer-like surface $\widetilde{T^4/\mathbb{Z}_3}$
- Main tools:
 - Gluing lattices
 - Niemeier lattices
- Symmetry surfing idea

- Moduli space of K3 surfaces and their symmetry groups:
 - Kummer surface $\widetilde{T^4/\mathbb{Z}_2} \quad \Leftarrow \quad$ Kummer construction
 - ▶ Kummer-like surface T^4/\mathbb{Z}_3
- Main tools:
 - Gluing lattices
 - ▶ Niemeier lattices
- Symmetry surfing idea
- Our results for \mathbb{Z}_3 -orbifold

Produces a K3 surface by minimally resolving singularities of $T^4(\Lambda)/\mathbb{Z}_2$

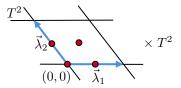
Produces a K3 surface by minimally resolving singularities of $T^4(\Lambda)/\mathbb{Z}_2$

• $T^4(\Lambda)/\mathbb{Z}_2$ has 16 singularities at the fixed points of the \mathbb{Z}_2 -action



Produces a K3 surface by minimally resolving singularities of $T^4(\Lambda)/\mathbb{Z}_2$

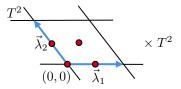
• $T^4(\Lambda)/\mathbb{Z}_2$ has 16 singularities at the fixed points of the \mathbb{Z}_2 -action



• The singularities are of type $A_1 \xrightarrow{\text{blow-up}} \mathbb{C}P^1$

Produces a K3 surface by minimally resolving singularities of $T^4(\Lambda)/\mathbb{Z}_2$

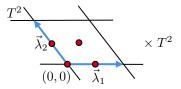
• $T^4(\Lambda)/\mathbb{Z}_2$ has 16 singularities at the fixed points of the \mathbb{Z}_2 -action



- The singularities are of type $A_1 \xrightarrow{\text{blow-up}} \mathbb{C}P^1$
- The complex surface obtained by minimally resolving the singularities is a K3 surface called a Kummer surface

Produces a K3 surface by minimally resolving singularities of $T^4(\Lambda)/\mathbb{Z}_2$

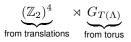
• $T^4(\Lambda)/\mathbb{Z}_2$ has 16 singularities at the fixed points of the \mathbb{Z}_2 -action



- The singularities are of type $A_1 \xrightarrow{\text{blow-up}} \mathbb{C}P^1$
- The complex surface obtained by minimally resolving the singularities is a K3 surface called a **Kummer surface**
- The Kummer surface carries over the complex and Kähler structures from the underlying torus $T^4(\Lambda)$

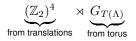
Symmetry group

• Symmetry group of a Kummer surface is of the form



Symmetry group

• Symmetry group of a Kummer surface is of the form

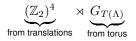


• Geometric action of the symmetry group is captured by its action on the integral homology lattice

 $H_2(K3,\mathbb{Z})$

Symmetry group

• Symmetry group of a Kummer surface is of the form



• Geometric action of the symmetry group is captured by its action on the integral homology lattice

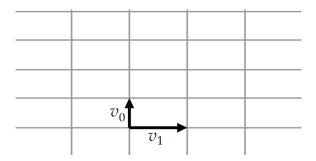
 $H_2(K3,\mathbb{Z})$

• The integral homology lattice can be described using gluing:

- $\blacktriangleright K$ contributions from the underlying torus $T^4(\Lambda)$
- ► P contributions from the blow-up of singularities

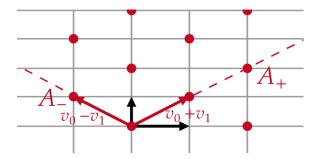
Lattice gluing

Example: Hyperbolic lattice U generated by v_0, v_1 Sublattices A_{\pm} generated by $v_0 \pm v_1$ (w_+, w_-) is a glue vector



Lattice gluing

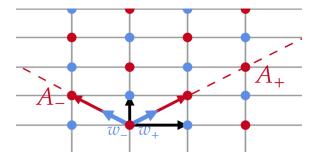
Example: Hyperbolic lattice U generated by v_0, v_1 Sublattices A_{\pm} generated by $v_0 \pm v_1$ (w_+, w_-) is a glue vector



 $U = (A_+ \oplus A_-) \oplus ((w_+, w_-) + (A_+ \oplus A_-))$

Lattice gluing

Example: Hyperbolic lattice U generated by v_0, v_1 Sublattices A_{\pm} generated by $v_0 \pm v_1$ (w_+, w_-) is a glue vector



 $U = (A_+ \oplus A_-) \oplus ((w_+, w_-) + (A_+ \oplus A_-))$

• Similarly, $H_2(K3,\mathbb{Z}) = K \oplus P + \text{glue vectors}$

- Similarly, $H_2(K3, \mathbb{Z}) = K \oplus P + \text{glue vectors}$
- Kummer lattice P can be embedded into a Niemeier lattice $N(A_1^{24})$

- Similarly, $H_2(K3, \mathbb{Z}) = K \oplus P + \text{glue vectors}$
- Kummer lattice P can be embedded into a Niemeier lattice $N(A_1^{24})$
- 24 even unimodular positive-definite lattices in \mathbb{R}^{24}

Roots	Glue vectors	Permutations
A_{1}^{24}	4096	M_{24}
A_2^{12}	729	M_{12}

- Similarly, $H_2(K3,\mathbb{Z}) = K \oplus P + \text{glue vectors}$
- Kummer lattice P can be embedded into a Niemeier lattice $N(A_1^{24})$
- 24 even unimodular positive-definite lattices in \mathbb{R}^{24}

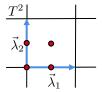
Roots	Glue vectors	Permutations
A_1^{24}	4096	M_{24}
A_2^{12}	729	M_{12}
	÷	

• Action of symmetry group on P can be viewed as a subgroup of automorphisms of the Niemeier lattice!

 \mathbb{Z}_2 -orbifold example [Taormina, Wendland '11]:

square Kummer surface

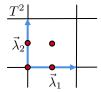
$$\begin{split} \Lambda_S: \quad \vec{\lambda}_1 &= (1,0), \, \vec{\lambda}_2 = (i,0) \\ \vec{\lambda}_3 &= (0,1), \, \vec{\lambda}_4 = (0,i) \end{split}$$



 \mathbb{Z}_2 -orbifold example [Taormina, Wendland '11]:

square Kummer surface

$$\begin{split} \Lambda_S: \quad \vec{\lambda}_1 &= (1,0), \, \vec{\lambda}_2 &= (i,0) \\ \vec{\lambda}_3 &= (0,1), \, \vec{\lambda}_4 &= (0,i) \end{split}$$



$$(\mathbb{Z}_2)^4 \rtimes (\mathbb{Z}_2)^2 \subset M_{24}_{244823040}$$

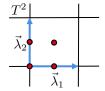
 \mathbb{Z}_2 -orbifold example [Taormina, Wendland '11]:

square Kummer surface

$$\Lambda_S: \quad \vec{\lambda}_1 = (1,0), \ \vec{\lambda}_2 = (i,0)$$
$$\vec{\lambda}_3 = (0,1), \ \vec{\lambda}_4 = (0,i)$$

tetrahedral Kummer surface

$$\begin{split} \Lambda_T : \quad \vec{\lambda}_1 &= (1,0), \ \vec{\lambda}_2 &= (i,0) \\ \vec{\lambda}_3 &= (0,1), \ \vec{\lambda}_4 &= \frac{1}{2}(i+1,i+1) \end{split}$$



$$(\mathbb{Z}_2)^4 \rtimes_{64} (\mathbb{Z}_2)^2 \subset M_{24}_{244823040}$$

 \mathbb{Z}_2 -orbifold example [Taormina, Wendland '11]:

square Kummer surface

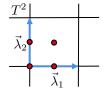
$$\Lambda_S: \quad \vec{\lambda}_1 = (1,0), \ \vec{\lambda}_2 = (i,0)$$
$$\vec{\lambda}_3 = (0,1), \ \vec{\lambda}_4 = (0,i)$$

tetrahedral Kummer surface

$$\begin{split} \Lambda_T : \quad \vec{\lambda}_1 &= (1,0), \ \vec{\lambda}_2 &= (i,0) \\ \vec{\lambda}_3 &= (0,1), \ \vec{\lambda}_4 &= \frac{1}{2}(i+1,i+1) \end{split}$$

Symmetry group:

 $(\mathbb{Z}_2)^4_{192} \rtimes A_4 \subset M_{24}$



$$(\mathbb{Z}_2)^4 \rtimes_{64} (\mathbb{Z}_2)^2 \subset M_{24}_{244823040}$$

 \mathbb{Z}_2 -orbifold example [Taormina, Wendland '11]:

square Kummer surface

$$\begin{split} \Lambda_S: \quad \vec{\lambda}_1 &= (1,0), \ \vec{\lambda}_2 &= (i,0) \\ \vec{\lambda}_3 &= (0,1), \ \vec{\lambda}_4 &= (0,i) \end{split}$$

tetrahedral Kummer surface

$$\Lambda_T: \quad \vec{\lambda}_1 = (1,0), \ \vec{\lambda}_2 = (i,0)$$
$$\vec{\lambda}_3 = (0,1), \ \vec{\lambda}_4 = \frac{1}{2}(i+1,i+1)$$

Symmetry group:

 $(\mathbb{Z}_2)^4 \rtimes A_4 \subset M_{24}$

Can be combined into overarching symmetry group:

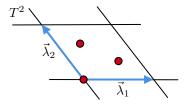
$$(\mathbb{Z}_2)^4 \rtimes A_7 \subset M_{24}$$

 $\begin{array}{c|c} T^2 \\ \hline \vec{\lambda}_2 \bullet \bullet \\ \bullet \\ \hline \vec{\lambda}_1 \end{array}$

$$(\mathbb{Z}_2)^4 \rtimes_{64} (\mathbb{Z}_2)^2 \subset M_{24}_{244823046}$$

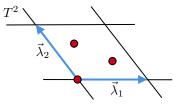
• $T^4(\Lambda)/\mathbb{Z}_3$ orbifold:

$$\begin{split} \Lambda : \quad \vec{\lambda}_1 &= (1,0), \, \vec{\lambda}_2 &= (\zeta,0) \\ \vec{\lambda}_3 &= (0,1), \, \vec{\lambda}_4 &= (0,\zeta) \end{split}$$



• $T^4(\Lambda)/\mathbb{Z}_3$ orbifold:

$$\begin{split} \Lambda : \quad \vec{\lambda}_1 &= (1,0), \, \vec{\lambda}_2 &= (\zeta,0) \\ \vec{\lambda}_3 &= (0,1), \, \vec{\lambda}_4 &= (0,\zeta) \end{split}$$

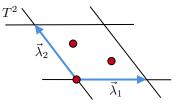


• 9 fixed points under the action of \mathbb{Z}_3 :

$$(z_1, z_2) \longmapsto (\zeta z_1, \zeta^{-1} z_2), \qquad \zeta = e^{2\pi i/3}$$

• $T^4(\Lambda)/\mathbb{Z}_3$ orbifold:

$$\begin{split} \Lambda : \quad \vec{\lambda}_1 &= (1,0), \, \vec{\lambda}_2 &= (\zeta,0) \\ \vec{\lambda}_3 &= (0,1), \, \vec{\lambda}_4 &= (0,\zeta) \end{split}$$



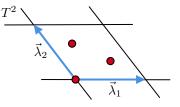
• 9 fixed points under the action of Z₃:

$$(z_1, z_2) \longmapsto (\zeta z_1, \zeta^{-1} z_2), \qquad \zeta = e^{2\pi i/3}$$

• The singularities are of type $A_2 \xrightarrow{\text{blow-up}} \mathbb{C}P^1 \cup \mathbb{C}P^1$

• $T^4(\Lambda)/\mathbb{Z}_3$ orbifold:

$$\begin{split} \Lambda : \quad \vec{\lambda}_1 &= (1,0), \, \vec{\lambda}_2 &= (\zeta,0) \\ \vec{\lambda}_3 &= (0,1), \, \vec{\lambda}_4 &= (0,\zeta) \end{split}$$



9 fixed points under the action of Z₃:

$$(z_1, z_2) \longmapsto (\zeta z_1, \zeta^{-1} z_2), \qquad \zeta = e^{2\pi i/3}$$

- The singularities are of type $A_2 \xrightarrow{\text{blow-up}} \mathbb{C}P^1 \cup \mathbb{C}P^1$
- The Kummer-like K3 surface $T^{4}(\Lambda)/\mathbb{Z}_{3}$ is obtained by minimally resolving the 9 singularities of type A_{2}

 The integral homology of the Kummer-like surface can be described using gluing techniques:

- $\blacktriangleright K$ contributions from the underlying torus $T^4(\Lambda)$
- ▶ P contributions from the blow-up of 9 singularities

• The integral homology of the Kummer-like surface can be described using gluing techniques:

- K contributions from the underlying torus $T^4(\Lambda)$
- ▶ P contributions from the blow-up of 9 singularities
- The Kummer-like lattice P can be embedded inside the Niemeier lattice $N(A_2^{12})$

\mathbb{Z}_3 -orbifold

 The integral homology of the Kummer-like surface can be described using gluing techniques:

- $\blacktriangleright K$ contributions from the underlying torus $T^4(\Lambda)$
- ▶ P contributions from the blow-up of 9 singularities
- The Kummer-like lattice P can be embedded inside the Niemeier lattice ${\cal N}(A_2^{12})$
- The symmetry group of the Kummer-like surface can be realized as a subgroup of automorphisms of $N(A_2^{12})$:

$$(\mathbb{Z}_3)^2 \rtimes \mathbb{Z}_4 \subset M_{12}$$

Future directions

1 Symmetry surf between $\widetilde{T^4/\mathbb{Z}_2}$ and $\widetilde{T^4/\mathbb{Z}_3}$ cases

$$\blacktriangleright \ (\mathbb{Z}_2)^4 \rtimes A_8 \subset M_{24}$$

 $\bullet \ (\mathbb{Z}_3)^2 \rtimes \mathbb{Z}_4 \subset M_{12} \subset M_{24}$

Future directions

- 1 Symmetry surf between $\widetilde{T^4/\mathbb{Z}_2}$ and $\widetilde{T^4/\mathbb{Z}_3}$ cases
 - $\blacktriangleright \ (\mathbb{Z}_2)^4 \rtimes A_8 \subset M_{24}$
 - $\blacktriangleright \ (\mathbb{Z}_3)^2 \rtimes \mathbb{Z}_4 \subset M_{12} \subset M_{24}$
- 2 Symmetry surf between the BPS spectrum of the σ -models with targets $\widetilde{T^4/\mathbb{Z}_2}$ and $\widetilde{T^4/\mathbb{Z}_3}$

Future directions

- 1 Symmetry surf between $\widetilde{T^4/\mathbb{Z}_2}$ and $\widetilde{T^4/\mathbb{Z}_3}$ cases
 - $\blacktriangleright \ (\mathbb{Z}_2)^4 \rtimes A_8 \subset M_{24}$
 - $\blacktriangleright \ (\mathbb{Z}_3)^2 \rtimes \mathbb{Z}_4 \subset M_{12} \subset M_{24}$
- 2 Symmetry surf between the BPS spectrum of the σ -models with targets $\widetilde{T^4/\mathbb{Z}_2}$ and $\widetilde{T^4/\mathbb{Z}_3}$

Thank you!