Mathematical reflections on

Sylvie Paycha, University of Potsdam joint work with Li Guo and Bin Zhang

WoMaP, Banff
August 14th 2023

Table of contents

(1) The concept of locality revisited
(2) Locality as a symmetric binary relation
(3) Locality relations are ubiquitious
(0) Evaluating meromorphic germs at poles in QFT
(0) Locality on meromorphic germs comes to the rescue
(0) Classifying locality evaluators on meromorphic germs
I. The concept of locality revisited

Locality principle

The principle of locality (or locality principle) states that an object is influenced directly only by its immediate surroundings.

principle

The principle of locality (or locality principle) states that an object is influenced directly only by its immediate surroundings.

Thus, one can separate events located in different regions of space-time and should be able to measure them independently.

principle

The principle of locality (or locality principle) states that an object is influenced directly only by its immediate surroundings.

Thus, one can separate events located in different regions of space-time and should be able to measure them independently.

- Propose a mathematical framework which encompasses the main features of the locality principle in QFT;

principle

The principle of locality (or locality principle) states that an object is influenced directly only by its immediate surroundings.

Thus, one can separate events located in different regions of space-time and should be able to measure them independently.

- Propose a mathematical framework which encompasses the main features of the locality principle in QFT;
- use this framework to carry out renormalisation in accordance with the locality principle.

Causal separation

Light cone, past and future

In the Minkowski space $\left(\mathbb{R}^{d}, g\right)$, where $g(x, y)=-x_{0} y_{0}+\sum_{j=1}^{d-1} x_{j} y_{j}$ is the Lorentzian scalar product,

Causal separation

Light cone, past and future

In the Minkowski space $\left(\mathbb{R}^{d}, g\right)$, where $g(x, y)=-x_{0} y_{0}+\sum_{j=1}^{d-1} x_{j} y_{j}$ is the Lorentzian scalar product, there is a notion of "past" and "future":

(picture downloaded from Wikipedia)

Causal separation

Light cone, past and future

In the Minkowski space $\left(\mathbb{R}^{d}, g\right)$, where $g(x, y)=-x_{0} y_{0}+\sum_{j=1}^{d-1} x_{j} y_{j}$ is the Lorentzian scalar product, there is a notion of "past" and "future":

(picture downloaded from Wikipedia)

Two sets S_{1} and S_{2} are causally separated $\left(S_{1} \| S_{2}\right)$ if and only if S_{i} does not lie in the future of S_{j} for $i \neq j$.

Locality in axiomatic QFT

The Wightman field $\varphi: \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{O}(H)$ obeys the locality axiom
$\operatorname{Supp}\left(f_{1}\right) \| \operatorname{Supp}\left(f_{2}\right) \Longrightarrow\left[\varphi\left(f_{1}\right), \varphi\left(f_{2}\right)\right]=0$.

Locality in axiomatic QFT

The Wightman field $\varphi: \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{O}(H)$ obeys the locality axiom

$$
\begin{equation*}
\operatorname{Supp}\left(f_{1}\right) \| \operatorname{Supp}\left(f_{2}\right) \Longrightarrow\left[\varphi\left(f_{1}\right), \varphi\left(f_{2}\right)\right]=0 \tag{1}
\end{equation*}
$$

The (relative) scattering matrix S_{f} satisfies the locality condition
$\operatorname{Supp}\left(f_{1}\right) \| \operatorname{Supp}\left(f_{2}\right) \Longrightarrow S_{f}\left(f_{1}+f_{2}\right)=S_{f}\left(f_{1}\right) S_{f}\left(f_{2}\right)$

Locality in axiomatic QFT

The Wightman field $\varphi: \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{O}(H)$ obeys the locality axiom

$$
\begin{equation*}
\operatorname{Supp}\left(f_{1}\right) \| \operatorname{Supp}\left(f_{2}\right) \Longrightarrow\left[\varphi\left(f_{1}\right), \varphi\left(f_{2}\right)\right]=0 \tag{1}
\end{equation*}
$$

The (relative) scattering matrix S_{f} satisfies the locality condition

$$
\begin{align*}
\operatorname{Supp}\left(f_{1}\right) \| \operatorname{Supp}\left(f_{2}\right) & \Longrightarrow S_{f}\left(f_{1}+f_{2}\right)=S_{f}\left(f_{1}\right) S_{f}\left(f_{2}\right) \\
& \Longrightarrow\left[S_{f}\left(f_{1}\right), S_{f}\left(f_{2}\right)\right]=0 . \tag{2}
\end{align*}
$$

Mathematical interpretation

We introduce two binary relations

- on sets:

$$
\begin{equation*}
O_{1} \top^{\prime} O_{2}: \Leftrightarrow\left[O_{1}, O_{2}\right]=0, \tag{3}
\end{equation*}
$$

Mathematical interpretation

We introduce two binary relations

- on sets:

$$
\begin{equation*}
O_{1} \top^{\prime} O_{2}: \Leftrightarrow\left[O_{1}, O_{2}\right]=0, \tag{3}
\end{equation*}
$$

- on test functions:

$$
\begin{equation*}
f_{1} \backslash f_{2}: \Leftrightarrow \operatorname{Supp}\left(f_{1}\right) \| \operatorname{Supp}\left(f_{2}\right) . \tag{4}
\end{equation*}
$$

Mathematical interpretation

We introduce two binary relations

- on sets:

$$
\begin{equation*}
O_{1} \top^{\prime} O_{2}: \Leftrightarrow\left[O_{1}, O_{2}\right]=0, \tag{3}
\end{equation*}
$$

- on test functions:

$$
\begin{equation*}
f_{1} \backslash f_{2}: \Leftrightarrow \operatorname{Supp}\left(f_{1}\right) \| \operatorname{Supp}\left(f_{2}\right) . \tag{4}
\end{equation*}
$$

Interpretation of (1)

$$
\begin{equation*}
f_{1} \top f_{2} \Longrightarrow \varphi\left(f_{1}\right) \top^{\prime} \varphi\left(f_{2}\right) . \tag{5}
\end{equation*}
$$

Mathematical interpretation

We introduce two binary relations

- on sets:

$$
\begin{equation*}
O_{1} \top^{\prime} O_{2}: \Leftrightarrow\left[O_{1}, O_{2}\right]=0, \tag{3}
\end{equation*}
$$

- on test functions:

$$
\begin{equation*}
f_{1} \top f_{2}: \Leftrightarrow \operatorname{Supp}\left(f_{1}\right) \| \operatorname{Supp}\left(f_{2}\right) . \tag{4}
\end{equation*}
$$

Interpretation of (1)

$$
\begin{equation*}
f_{1} \top f_{2} \Longrightarrow \varphi\left(f_{1}\right) \top^{\prime} \varphi\left(f_{2}\right) . \tag{5}
\end{equation*}
$$

Interpretation of (2)

$$
\begin{equation*}
f_{1} \top f_{2} \Longrightarrow S_{f}\left(f_{1}+f_{2}\right)=S_{f}\left(f_{1}\right) S_{f}\left(f_{2}\right) . \tag{6}
\end{equation*}
$$

II. Locality as a symmetric binary relation

Definition of locality

A locality set is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called locality relation (or independence relation) of the locality set:

Definition of locality

A locality set is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called locality relation (or independence relation) of the locality set:

$$
x_{1} \top x_{2} \Longleftrightarrow\left(x_{1}, x_{2}\right) \in \top, \quad \forall x_{1}, x_{2} \in X .
$$

Definition of locality

A locality set is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called locality relation (or independence relation) of the locality set:

$$
x_{1} \top x_{2} \Longleftrightarrow\left(x_{1}, x_{2}\right) \in \top, \quad \forall x_{1}, x_{2} \in X
$$

First examples of locality

- $X\rceil Y: \Longleftrightarrow X \cap Y=\emptyset$ on subsets X, Y of a set Z.

Definition of locality

A locality set is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called locality relation (or independence relation) of the locality set:

$$
x_{1} \top x_{2} \Longleftrightarrow\left(x_{1}, x_{2}\right) \in \top, \quad \forall x_{1}, x_{2} \in X
$$

First examples of locality

- $X \uparrow \cap: \Longleftrightarrow X \cap Y=\emptyset$ on subsets X, Y of a set Z.
- $X \backslash Y: \Longleftrightarrow X \perp Y$ on subsets X, Y of an euclidean vector space (V, \perp).

Definition of locality

A locality set is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called locality relation (or independence relation) of the locality set:

$$
x_{1} \top x_{2} \Longleftrightarrow\left(x_{1}, x_{2}\right) \in \top, \quad \forall x_{1}, x_{2} \in X
$$

First examples of locality

- $X \top \cap: \Longleftrightarrow X \cap Y=\emptyset$ on subsets X, Y of a set Z.
- $X \backslash Y: \Longleftrightarrow X \perp Y$ on subsets X, Y of an euclidean vector space (V, \perp).

(almost-)Separation of supports

Let $U \subset \mathbb{R}^{n}$ be an open subset and $\epsilon \geq 0$. Two functions ϕ, ψ in $\mathcal{D}(U)$ are independent i.e., $\phi \top_{\epsilon} \psi$ whenever

Definition of locality

A locality set is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called locality relation (or independence relation) of the locality set:

$$
x_{1} \top x_{2} \Longleftrightarrow\left(x_{1}, x_{2}\right) \in \top, \quad \forall x_{1}, x_{2} \in X
$$

First examples of locality

- $X \top \cap: \Longleftrightarrow X \cap Y=\emptyset$ on subsets X, Y of a set Z.
- $X \backslash Y: \Longleftrightarrow X \perp Y$ on subsets X, Y of an euclidean vector space (V, \perp).

(almost-)Separation of supports

Let $U \subset \mathbb{R}^{n}$ be an open subset and $\epsilon \geq 0$. Two functions ϕ, ψ in $\mathcal{D}(U)$ are independent i.e., $\phi \top_{\epsilon} \psi$ whenever $d(\operatorname{Supp}(\phi), \operatorname{Supp}(\psi))>\epsilon$.

Definition of locality

A locality set is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called locality relation (or independence relation) of the locality set:

$$
x_{1} \top x_{2} \Longleftrightarrow\left(x_{1}, x_{2}\right) \in \top, \quad \forall x_{1}, x_{2} \in X
$$

First examples of locality

- $X \top \cap: \Longleftrightarrow X \cap Y=\emptyset$ on subsets X, Y of a set Z.
- $X \backslash Y: \Longleftrightarrow X \perp Y$ on subsets X, Y of an euclidean vector space (V, \perp).

(almost-)Separation of supports

Let $U \subset \mathbb{R}^{n}$ be an open subset and $\epsilon \geq 0$. Two functions ϕ, ψ in $\mathcal{D}(U)$ are independent i.e., $\phi \top_{\epsilon} \psi$ whenever $d(\operatorname{Supp}(\phi), \operatorname{Supp}(\psi))>\epsilon$. For $\epsilon=0$,

Definition of locality

A locality set is a couple (X, T) where X is a set and $T \subseteq X \times X$ is a symmetric relation on X, called locality relation (or independence relation) of the locality set:

$$
x_{1} \top x_{2} \Longleftrightarrow\left(x_{1}, x_{2}\right) \in \top, \quad \forall x_{1}, x_{2} \in X
$$

First examples of locality

- $X \top \cap: \Longleftrightarrow X \cap Y=\emptyset$ on subsets X, Y of a set Z.
- $X \backslash Y: \Longleftrightarrow X \perp Y$ on subsets X, Y of an euclidean vector space (V, \perp).

(almost-)Separation of supports

Let $U \subset \mathbb{R}^{n}$ be an open subset and $\epsilon \geq 0$. Two functions ϕ, ψ in $\mathcal{D}(U)$ are independent i.e., $\phi \top_{\epsilon} \psi$ whenever $d(\operatorname{Supp}(\phi), \operatorname{Supp}(\psi))>\epsilon$. For $\epsilon=0$, this amounts to disjointness of supports, otherwise to ϵ-separation of supports.

Further examples

Probability theory: independence of events
Given a probability space $\mathcal{P}:=(\Omega, \Sigma, P)$ and two events $A, B \in \Sigma$:
$A \top B \Longleftrightarrow P(A \cap B)=P(A) P(B)$.

Further examples

Probability theory: independence of events

Given a probability space $\mathcal{P}:=(\Omega, \Sigma, P)$ and two events $A, B \in \Sigma$:

$$
A \top B \Longleftrightarrow P(A \cap B)=P(A) P(B) .
$$

Geometry: transversal manifolds

Given two submanifolds L_{1} and L_{2} of a manifold M :

$$
L_{1} \top L_{2}: \Longleftrightarrow L_{1} \pitchfork L_{2} \Longleftrightarrow T_{x} L_{1}+T_{x} L_{2}=T_{x} M \quad \forall x \in L_{1} \cap L_{2} .
$$

Further examples

Probability theory: independence of events

Given a probability space $\mathcal{P}:=(\Omega, \Sigma, P)$ and two events $A, B \in \Sigma$:

$$
A \top B \Longleftrightarrow P(A \cap B)=P(A) P(B) .
$$

Geometry: transversal manifolds
Given two submanifolds L_{1} and L_{2} of a manifold M :

$$
L_{1} \top L_{2}: \Longleftrightarrow L_{1} \pitchfork L_{2} \Longleftrightarrow T_{x} L_{1}+T_{x} L_{2}=T_{x} M \quad \forall x \in L_{1} \cap L_{2} .
$$

Number theory: coprime numbers

Given two positive integers m, n in \mathbb{N} :

$$
m 丁 n \Longleftrightarrow m \wedge n=1 .
$$

category

Locality structures

- set $X \rightsquigarrow$ locality set (X, \top); the polar set of U is $U^{\top}:=\{x \in X, x \top u \quad \forall u \in U\}$
- semi-group $\left(G, m_{G}\right) \rightsquigarrow$ locality semi-group $\left(G, m_{G}, \top\right)$ ($U \subset G \Longrightarrow U^{\top}$ semi-group);

category

Locality structures

- set $X \rightsquigarrow$ locality set (X, \top); the polar set of U is $U^{\top}:=\left\{x \in X, x^{\top} u \quad \forall u \in U\right\}$
- semi-group $\left(G, m_{G}\right) \rightsquigarrow$ locality semi-group $\left(G, m_{G}, \top\right)$ ($U \subset G \Longrightarrow U^{\top}$ semi-group);
- vector space $(V,+, \cdot) \rightsquigarrow$ locality vector space $(V,+, \cdot, \top)$ ($U \subset V \Longrightarrow U^{\top}$ vector space);

category

Locality structures

- set $X \rightsquigarrow$ locality set (X, \top); the polar set of U is $U^{\top}:=\left\{x \in X, x^{\top} u \quad \forall u \in U\right\}$
- semi-group $\left(G, m_{G}\right) \rightsquigarrow$ locality semi-group $\left(G, m_{G}, \top\right)$ ($U \subset G \Longrightarrow U^{\top}$ semi-group);
- vector space $(V,+, \cdot) \rightsquigarrow$ locality vector space $(V,+, \cdot, \top)$ ($U \subset V \Longrightarrow U^{\top}$ vector space);
- algebra $\left(A,+, \cdot, m_{A}\right) \rightsquigarrow$ locality algebra $\left(A,+, \cdot, m_{A}, \top\right)$.

Locality morphisms: $f:\left(X, \top_{X}\right) \rightarrow(Y, \top Y)$

- locality map:
$(f \times f)\left(\top_{x}\right) \subset \top_{y} \quad$ or equivalently $\quad x_{1} \top_{x} x_{2} \Longrightarrow f\left(x_{1}\right) \top_{y} f\left(x_{2}\right)$;

category

Locality structures

- set $X \rightsquigarrow$ locality set (X, \top); the polar set of U is $U^{\top}:=\left\{x \in X, x^{\top} u \quad \forall u \in U\right\}$
- semi-group $\left(G, m_{G}\right) \rightsquigarrow$ locality semi-group $\left(G, m_{G}, \top\right)$ ($U \subset G \Longrightarrow U^{\top}$ semi-group);
- vector space $(V,+, \cdot) \rightsquigarrow$ locality vector space $(V,+, \cdot, \top)$ ($U \subset V \Longrightarrow U^{\top}$ vector space);
- algebra $\left(A,+, \cdot, m_{A}\right) \rightsquigarrow$ locality algebra $\left(A,+, \cdot, m_{A}, \top\right)$.

Locality morphisms: $f:\left(X, \top_{X}\right) \rightarrow(Y, \top Y)$

- locality map:
$(f \times f)\left(\top_{x}\right) \subset \top_{y}$ or equivalently $x_{1} \top_{x} x_{2} \Longrightarrow f\left(x_{1}\right) \top_{y} f\left(x_{2}\right)$;
- locality semi-group morphism $f:\left(X, m_{X}, \top_{X}\right) \rightarrow\left(Y, m_{Y}, \top_{Y}\right)$: f is a locality map and $x_{1} \top x x_{2} \Longrightarrow f\left(m_{X}\left(x_{1}, x_{2}\right)\right)=m_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$ etc...
III. Locality relations are ubiquitious

Local functionals

are functionals F on test functions (fields) φ of the form $F(\varphi)=\int_{M} f\left(j_{x}^{k}(\varphi)\right) d x$ (here $j_{x}^{k}(\phi)$ is the k-th jet of ϕ at x): The localised version at φ :

$$
\begin{equation*}
F(\varphi+\psi)=F(\varphi)+\int_{M} f\left(j_{x}^{k}(\psi)\right) d x \quad \forall \psi . \tag{7}
\end{equation*}
$$

Local functionals

are functionals F on test functions (fields) φ of the form $F(\varphi)=\int_{M} f\left(j_{x}^{k}(\varphi)\right) d x$ (here $j_{x}^{k}(\phi)$ is the k-th jet of ϕ at x): The localised version at φ :

$$
\begin{equation*}
F(\varphi+\psi)=F(\varphi)+\int_{M} f\left(j_{x}^{k}(\psi)\right) d x \quad \forall \psi . \tag{7}
\end{equation*}
$$

Hammerstein property/partial additivity simiar to a causality condition on S -matrices of [Epstein, Glaser (1973)], [Bogoliubov, Shirkov (1959))], [Stückelberg (1950, 1951)]

$$
\begin{equation*}
\varphi_{1} \top n \varphi_{2} \Longrightarrow F\left(\varphi_{1}+\varphi+\varphi_{2}\right)=F\left(\varphi_{1}+\varphi\right)-F(\varphi)+F\left(\varphi+\varphi_{2}\right) \quad \forall \varphi . \tag{8}
\end{equation*}
$$

Local functionals

are functionals F on test functions (fields) φ of the form $F(\varphi)=\int_{M} f\left(j_{x}^{k}(\varphi)\right) d x$ (here $j_{x}^{k}(\phi)$ is the k-th jet of ϕ at x): The localised version at φ :

$$
\begin{equation*}
F(\varphi+\psi)=F(\varphi)+\int_{M} f\left(j_{x}^{k}(\psi)\right) d x \quad \forall \psi . \tag{7}
\end{equation*}
$$

Hammerstein property/partial additivity similar to a causality condition on S -matrices of [Epstein, Glaser (1973)], [Bogoliubov, Shirkov (1959))], [Stückelberg (1950, 1951)]

$$
\begin{equation*}
\varphi_{1} \top \cap \varphi_{2} \Longrightarrow F\left(\varphi_{1}+\varphi+\varphi_{2}\right)=F\left(\varphi_{1}+\varphi\right)-F(\varphi)+F\left(\varphi+\varphi_{2}\right) \quad \forall \varphi \tag{8}
\end{equation*}
$$

Comparing the two [Brouder, Dang, Laurent-Gengoux, Rejzner (2018)] Provided $D_{\varphi} F$ can be represented as a function $\nabla_{\varphi} F$ such that the map $\varphi \mapsto \nabla_{\varphi} F$ is smooth, then $\quad(8) \Longleftrightarrow(7)$.

and singularities

Separation of wavefront sets

We define two locality relations on on $\mathcal{D}^{\prime}(U), U \subset \mathbb{R}^{n}$:

$$
v_{1} \top^{\text {sing }} v_{2} \Longleftrightarrow \operatorname{Singsupp}\left(v_{1}\right) \cap \operatorname{Singsupp}\left(v_{2}\right)=\emptyset,
$$

and singularities

Separation of wavefront sets

We define two locality relations on on $\mathcal{D}^{\prime}(U), U \subset \mathbb{R}^{n}$:

$$
\begin{aligned}
& v_{1} \top^{\text {sing }} v_{2} \Longleftrightarrow \operatorname{Singsupp}\left(v_{1}\right) \cap \operatorname{Singsupp}\left(v_{2}\right)=\emptyset, \\
& \text { and } \quad v_{1} \top^{\mathrm{WF}} v_{2} \Longleftrightarrow \mathrm{WF}\left(v_{1}\right) \cap \mathrm{WF}^{\prime}\left(v_{2}\right)=\emptyset
\end{aligned}
$$

where we have set $\mathrm{WF}^{\prime}(v):=\left\{(x,-\xi) \in U \times\left(\mathbb{R}^{n} \backslash\{0\}\right) \mid(x, \xi) \in \mathrm{WF}(v)\right\}$.

Counterexample
Distributions can be independent for T^{WF} and not for $T^{\text {sing }}$. We have $v_{1} T^{\text {sing }} v_{2} \Longrightarrow v_{1} \top^{W F} v_{2}$

and singularities

Separation of wavefront sets

We define two locality relations on on $\mathcal{D}^{\prime}(U), U \subset \mathbb{R}^{n}$:

$$
\begin{aligned}
& v_{1} \top^{\text {sing }} v_{2} \Longleftrightarrow \operatorname{Singsupp}\left(v_{1}\right) \cap \operatorname{Singsupp}\left(v_{2}\right)=\emptyset, \\
& \text { and } \quad v_{1} \top^{\mathrm{WF}} v_{2} \Longleftrightarrow \mathrm{WF}\left(v_{1}\right) \cap \mathrm{WF}^{\prime}\left(v_{2}\right)=\emptyset
\end{aligned}
$$

where we have set $\mathrm{WF}^{\prime}(v):=\left\{(x,-\xi) \in U \times\left(\mathbb{R}^{n} \backslash\{0\}\right) \mid(x, \xi) \in \mathrm{WF}(v)\right\}$.

Counterexample
Distributions can be independent for $T^{W F}$ and not for $T^{\text {sing }}$. We have $v_{1} \top^{\text {sing }} v_{2} \Longrightarrow v_{1} \top^{W F} v_{2}$ but not conversely.

and singularities

Separation of wavefront sets

We define two locality relations on on $\mathcal{D}^{\prime}(U), U \subset \mathbb{R}^{n}$:

$$
v_{1} \top^{\text {sing }} v_{2} \Longleftrightarrow \operatorname{Singsupp}\left(v_{1}\right) \cap \operatorname{Singsupp}\left(v_{2}\right)=\emptyset,
$$

and $\quad v_{1} \top^{\mathrm{WF}} v_{2} \Longleftrightarrow \mathrm{WF}\left(v_{1}\right) \cap \mathrm{WF}^{\prime}\left(v_{2}\right)=\emptyset$
where we have set $\mathrm{WF}^{\prime}(v):=\left\{(x,-\xi) \in U \times\left(\mathbb{R}^{n} \backslash\{0\}\right) \mid(x, \xi) \in \mathrm{WF}(v)\right\}$.

Counterexample

Distributions can be independent for $T^{W F}$ and not for $T^{\text {sing }}$. We have $v_{1} \top^{\text {sing }} v_{2} \Longrightarrow v_{1} \top^{W F} v_{2}$ but not conversely. The wavefront sets of $\nu_{\mathbf{1}}(\phi):=\int_{\mathbb{R}^{2}} \phi(0, y) d y$ and $\nu_{\mathbf{2}}(\phi):=\int_{\mathbb{R}^{2}} \phi(x, 0) d x$ read $\operatorname{WF}\left(\nu_{\mathbf{1}}\right)=\{((0, y) ;(\lambda, 0)) \mid y \in \mathbb{R}, \lambda \in \mathbb{R} \backslash\{0\}\} \quad ; \quad \operatorname{WF}\left(\nu_{\mathbf{2}}\right)=\{((x, 0) ;(0, \mu)) \mid x \in \mathbb{R}, \mu \in \mathbb{R} \backslash\{0\}\}$,

and singularities

Separation of wavefront sets

We define two locality relations on on $\mathcal{D}^{\prime}(U), U \subset \mathbb{R}^{n}$:

$$
v_{1} \top^{\text {sing }} v_{2} \Longleftrightarrow \operatorname{Singsupp}\left(v_{1}\right) \cap \operatorname{Singsupp}\left(v_{2}\right)=\emptyset,
$$

$$
\text { and } \quad v_{1} \top^{\mathrm{WF}} v_{2} \Longleftrightarrow \mathrm{WF}\left(v_{1}\right) \cap \mathrm{WF}^{\prime}\left(v_{2}\right)=\emptyset
$$

where we have set $\mathrm{WF}^{\prime}(v):=\left\{(x,-\xi) \in U \times\left(\mathbb{R}^{n} \backslash\{0\}\right) \mid(x, \xi) \in \mathrm{WF}(v)\right\}$.

Counterexample

Distributions can be independent for $T^{W F}$ and not for $T^{\text {sing }}$. We have $v_{1} \top^{\text {sing }} v_{2} \Longrightarrow v_{1} \top^{W F} v_{2}$ but not conversely. The wavefront sets of $\nu_{\mathbf{1}}(\phi):=\int_{\mathbb{R}^{2}} \phi(0, y) d y$ and $\nu_{\mathbf{2}}(\phi):=\int_{\mathbb{R}^{2}} \phi(x, 0) d x$ read $\mathrm{WF}\left(\nu_{\mathbf{1}}\right)=\{((0, y) ;(\lambda, 0)) \mid y \in \mathbb{R}, \lambda \in \mathbb{R} \backslash\{0\}\} \quad ; \quad \mathrm{WF}\left(\nu_{\mathbf{2}}\right)=\{((x, 0) ;(0, \mu)) \mid x \in \mathbb{R}, \mu \in \mathbb{R} \backslash\{0\}\}$, so $\nu_{1} \top^{\mathrm{WF}} \nu_{2}$

and singularities

Separation of wavefront sets

We define two locality relations on on $\mathcal{D}^{\prime}(U), U \subset \mathbb{R}^{n}$:

$$
v_{1} \top^{\text {sing }} v_{2} \Longleftrightarrow \operatorname{Singsupp}\left(v_{1}\right) \cap \operatorname{Singsupp}\left(v_{2}\right)=\emptyset,
$$

and $\quad v_{1} \top^{\mathrm{WF}} v_{2} \Longleftrightarrow \mathrm{WF}\left(v_{1}\right) \cap \mathrm{WF}^{\prime}\left(v_{2}\right)=\emptyset$
where we have set $\mathrm{WF}^{\prime}(v):=\left\{(x,-\xi) \in U \times\left(\mathbb{R}^{n} \backslash\{0\}\right) \mid(x, \xi) \in \mathrm{WF}(v)\right\}$.

Counterexample

Distributions can be independent for $T^{W F}$ and not for $T^{\text {sing }}$. We have $v_{1} \top^{\text {sing }} v_{2} \Longrightarrow v_{1} \top^{W F} v_{2}$ but not conversely. The wavefront sets of $\nu_{\mathbf{1}}(\phi):=\int_{\mathbb{R}^{2}} \phi(0, y) d y$ and $\nu_{\mathbf{2}}(\phi):=\int_{\mathbb{R}^{2}} \phi(x, 0) d x$ read $\mathrm{WF}\left(\nu_{\mathbf{1}}\right)=\{((0, y) ;(\lambda, 0)) \mid y \in \mathbb{R}, \lambda \in \mathbb{R} \backslash\{0\}\} \quad ; \quad \mathrm{WF}\left(\nu_{\mathbf{2}}\right)=\{((x, 0) ;(0, \mu)) \mid x \in \mathbb{R}, \mu \in \mathbb{R} \backslash\{0\}\}$, so $\nu_{1} \top^{\mathrm{WF}} \nu_{2}$ but $\nu_{1} \top^{\text {sipg }} \nu_{2}$.

Partial product and

Partial product of distributions

(Hörmander) $\nu_{1} \top^{\mathrm{WF}} \nu_{2} \Rightarrow$ (the product $\nu_{1} \cdot \nu_{2}$ is well-defined.)

Partial product and

Partial product of distributions

(Hörmander) $\nu_{1} \top^{\mathrm{WF}} \nu_{2} \Rightarrow$ (the product $\nu_{1} \cdot \nu_{2}$ is well-defined.)

Partial product of pseudodifferential operators of non-integer order

We equip $\Psi_{\text {pgh }}^{\notin \mathbb{Z}}$ (the canonical trace $T \mathrm{R}$ is well defined) with the locality relation $A_{1} \top \notin \mathbb{Z} A_{2}: \Leftrightarrow\left(\operatorname{ord}\left(A_{1}\right)+\operatorname{ord}\left(A_{2}\right) \notin \mathbb{Z}\right) \Rightarrow\left(\mathrm{TR}\left(\left[A_{1}, A_{2}\right]\right)=0\right)$.

Partial product and

Partial product of distributions

(Hörmander) $\nu_{1} T^{\mathrm{WF}} \nu_{2} \Rightarrow$ (the product $\nu_{1} \cdot \nu_{2}$ is well-defined.)

Partial product of pseudodifferential operators of non-integer order

We equip $\Psi_{\mathrm{pgh}}^{\not \mathbb{Z}}$ (the canonical trace $T \mathrm{R}$ is well defined) with the locality relation $A_{1} \top \notin \mathbb{Z} A_{2}: \Leftrightarrow\left(\operatorname{ord}\left(A_{1}\right)+\operatorname{ord}\left(A_{2}\right) \notin \mathbb{Z}\right) \Rightarrow\left(\operatorname{TR}\left(\left[A_{1}, A_{2}\right]\right)=0\right)$.

Counterexample
Yet \mathbb{C} equipped with the locality relation $x \top^{\notin \mathbb{Z}} y \Longleftrightarrow x+y \notin \mathbb{Z}$. $(\mathbb{C}, \top,+$) is NOT a locality semi-group:

Partial product and

Partial product of distributions

(Hörmander) $\nu_{1} T^{\mathrm{WF}} \nu_{2} \Rightarrow$ (the product $\nu_{1} \cdot \nu_{2}$ is well-defined.)

Partial product of pseudodifferential operators of non-integer order

We equip $\Psi_{\mathrm{pgh}}^{\not \mathbb{Z}}$ (the canonical trace $T \mathrm{R}$ is well defined) with the locality relation $A_{1} \top \notin \mathbb{Z} A_{2}: \Leftrightarrow\left(\operatorname{ord}\left(A_{1}\right)+\operatorname{ord}\left(A_{2}\right) \notin \mathbb{Z}\right) \Rightarrow\left(\operatorname{TR}\left(\left[A_{1}, A_{2}\right]\right)=0\right)$.

Counterexample

Yet \mathbb{C} equipped with the locality relation $x \top^{\notin \mathbb{Z}} y \Longleftrightarrow x+y \notin \mathbb{Z}$. ($\mathbb{C}, \top,+$) is NOT a locality semi-group:for $U=\{1 / 3\}$ we have $(1 / 3,1 / 3) \in\left(U^{\top} \times U^{\top}\right) \cap \top$ but $1 / 3+1 / 3=2 / 3 \notin U^{\top}$.

Open questions on locality [Clavier, Foissy, Lopez, S.P. 2022]

Open questions on locality [Clavier, Foissy, Lopez, S.P. 2022]

In that work, we enhance to the locality setup the usual Milnor-Moore theorem that classifies graded connected cocommutative Hopf algebras. We describe them in terms of the locality tensor algebra of the locality Lie algebra of their primitive elements. This requires a locality tensor product and raises the following questions:

Open questions on [Clavier, Foissy, Lopez, S.P. 2022]

In that work, we enhance to the locality setup the usual Milnor-Moore theorem that classifies graded connected cocommutative Hopf algebras. We describe them in terms of the locality tensor algebra of the locality Lie algebra of their primitive elements. This requires a locality tensor product and raises the following questions:
(1) When is the quotient V / W of a locality vector space (V, \top) by a linear subspace W, a locality vector space if equipped with the quotient locality relation T given by the final locality relation:

$$
\left([u]{ }^{\top}[v] \Longleftrightarrow \exists\left(u^{\prime}, v^{\prime}\right) \in[u] \times[v]: u^{\prime} \top v^{\prime}\right) \quad \forall([u],[v]) \in(V / W)^{2}
$$

for the canonical projection map $\pi: V \rightarrow V / W$?

In that work, we enhance to the locality setup the usual Milnor-Moore theorem that classifies graded connected cocommutative Hopf algebras. We describe them in terms of the locality tensor algebra of the locality Lie algebra of their primitive elements. This requires a locality tensor product and raises the following questions:
(1) When is the quotient V / W of a locality vector space (V, T) by a linear subspace W, a locality vector space if equipped with the quotient locality relation \bar{T} given by the final locality relation:
$\left([u] \bar{\top}[v] \Longleftrightarrow \exists\left(u^{\prime}, v^{\prime}\right) \in[u] \times[v]: u^{\prime} \top v^{\prime}\right) \quad \forall([u],[v]) \in(V / W)^{2}$
for the canonical projection map $\pi: V \rightarrow V / W$?
(2) Is the locality tensor product $V_{1} \otimes_{T} V_{2}$ of locality vector spaces $\left(V_{1}, \top_{1}\right),\left(V_{2}, \top_{2}\right)$ a locality vector space? Does it have the expected universality property?

In that work, we enhance to the locality setup the usual Milnor-Moore theorem that classifies graded connected cocommutative Hopf algebras. We describe them in terms of the locality tensor algebra of the locality Lie algebra of their primitive elements. This requires a locality tensor product and raises the following questions:
(1) When is the quotient V / W of a locality vector space (V, \top) by a linear subspace W, a locality vector space if equipped with the quotient locality relation $\bar{\top}$ given by the final locality relation:

$$
\left([u] \top[v] \Longleftrightarrow \exists\left(u^{\prime}, v^{\prime}\right) \in[u] \times[v]: u^{\prime} \top v^{\prime}\right) \quad \forall([u],[v]) \in(V / W)^{2}
$$

for the canonical projection map $\pi: V \rightarrow V / W$?
(2) Is the locality tensor product $V_{1} \otimes_{T} V_{2}$ of locality vector spaces $\left(V_{1}, \top_{1}\right),\left(V_{2}, \top_{2}\right)$ a locality vector space? Does it have the expected universality property?
(3) Is the locality tensor algebra $\mathcal{T}^{\top}(V)=\oplus_{n=0}^{\infty} V^{\otimes T^{n}}$ of a locality vector space (V, \top) a locality algebra? Does it have the expected universality property?

In that work, we enhance to the locality setup the usual Milnor-Moore theorem that classifies graded connected cocommutative Hopf algebras. We describe them in terms of the locality tensor algebra of the locality Lie algebra of their primitive elements. This requires a locality tensor product and raises the following questions:
(1) When is the quotient V / W of a locality vector space (V, \top) by a linear subspace W, a locality vector space if equipped with the quotient locality relation $\bar{\top}$ given by the final locality relation:

$$
\left([u] \top[v] \Longleftrightarrow \exists\left(u^{\prime}, v^{\prime}\right) \in[u] \times[v]: u^{\prime} \top v^{\prime}\right) \quad \forall([u],[v]) \in(V / W)^{2}
$$

for the canonical projection map $\pi: V \rightarrow V / W$?
(2) Is the locality tensor product $V_{1} \otimes_{T} V_{2}$ of locality vector spaces $\left(V_{1}, \top_{1}\right),\left(V_{2}, \top_{2}\right)$ a locality vector space? Does it have the expected universality property?
(3) Is the locality tensor algebra $\mathcal{T}^{\top}(V)=\oplus_{n=0}^{\infty} V^{\otimes T^{n}}$ of a locality vector space (V, \top) a locality algebra? Does it have the expected universality property?
IV. Evaluating meromorphic germs at poles in QFT

Functions of several variables in QFT

Speer's analytic renormalisation [JMP 1967] revisited

Eugene Speer considers Feynman amplitudes given by the coefficients of the perturbation-series expansion of the S matrix in a Lagrangian field theory (with non zero mass).

Functions of several variables in QFT

Speer's analytic renormalisation [JMP 1967] revisited

Eugene Speer considers Feynman amplitudes given by the coefficients of the perturbation-series expansion of the S matrix in a Lagrangian field theory (with non zero mass).

Excerpt of Speer's article

In this paper we apply a method of defining divergent quantities which was originated by Riesz and has been used in various contexts by many authors. [....] We find it necessary to consider functions of several complex variables z_{1}, \cdots, z_{k}, one associated with each line of the Feynman graph. The main difficulty is the extension of the above [Riesz's] treatment of poles to the more complicated singularities which occur in several complex variables...

Brain teaser

(We assume the poles are at zero)
Speer shows [Theorem 1] that the divergent expressions lie in the filtered algebra $\mathcal{M}^{\text {Feyn }}\left(\mathbb{C}^{\infty}\right):=\cup_{k=1}^{\infty} \mathcal{M}^{\text {Feyn }}\left(\mathbb{C}^{k}\right)$ consisting of Feynman functions $f: \mathbb{C}^{k} \rightarrow \mathbb{C}$,

Brain teaser

(We assume the poles are at zero)
Speer shows [Theorem 1] that the divergent expressions lie in the filtered algebra $\mathcal{M}^{\mathrm{Feyn}}\left(\mathbb{C}^{\infty}\right):=\cup_{k=1}^{\infty} \mathcal{M}^{\mathrm{Feyn}}\left(\mathbb{C}^{k}\right)$ consisting of Feynman functions $f: \mathbb{C}^{k} \rightarrow \mathbb{C}$,

$$
f=\frac{h\left(z_{1}, \cdots, z_{k}\right)}{L_{1} s_{1} \cdots L_{m}^{s_{m}}}, \quad L_{i}=\sum_{j \in J_{i}} z_{j}, \quad J_{i} \subset\{1, \cdots, k\}, \quad h \text { holom. at zero. }
$$

Brain teaser

(We assume the poles are at zero)
Speer shows [Theorem 1] that the divergent expressions lie in the filtered algebra $\mathcal{M}^{\text {Feyn }}\left(\mathbb{C}^{\infty}\right):=\cup_{k=1}^{\infty} \mathcal{M}^{\text {Feyn }}\left(\mathbb{C}^{k}\right)$ consisting of Feynman functions $f: \mathbb{C}^{k} \rightarrow \mathbb{C}$,

$$
f=\frac{h\left(z_{1}, \cdots, z_{k}\right)}{L_{1}^{s_{1}} \cdots L_{m}^{s_{m}}}, \quad L_{i}=\sum_{j \in J_{i}} z_{j}, \quad J_{i} \subset\{1, \cdots, k\}, \quad h \text { holom. at zero. }
$$

Questions:

(1) How to evaluate f consistently at the poles $z_{1}=\cdots=z_{k}=0$?

Brain teaser

(We assume the poles are at zero)
Speer shows [Theorem 1] that the divergent expressions lie in the filtered algebra $\mathcal{M}^{\text {Feyn }}\left(\mathbb{C}^{\infty}\right):=\cup_{k=1}^{\infty} \mathcal{M}^{\text {Feyn }}\left(\mathbb{C}^{k}\right)$ consisting of Feynman functions $f: \mathbb{C}^{k} \rightarrow \mathbb{C}$,

$$
f=\frac{h\left(z_{1}, \cdots, z_{k}\right)}{L_{1}^{s_{1}} \cdots L_{m}^{s_{m}}}, \quad L_{i}=\sum_{j \in J_{i}} z_{j}, \quad J_{i} \subset\{1, \cdots, k\}, \quad h \text { holom. at zero. }
$$

Questions:

(1) How to evaluate f consistently at the poles $z_{1}=\cdots=z_{k}=0$?
(2) What freedom of choice do we have for the evaluator?

Brain teaser

(We assume the poles are at zero)
Speer shows [Theorem 1] that the divergent expressions lie in the filtered algebra $\mathcal{M}^{\mathrm{Feyn}}\left(\mathbb{C}^{\infty}\right):=\cup_{k=1}^{\infty} \mathcal{M}^{\mathrm{Feyn}}\left(\mathbb{C}^{k}\right)$ consisting of Feynman functions $f: \mathbb{C}^{k} \rightarrow \mathbb{C}$,

$$
f=\frac{h\left(z_{1}, \cdots, z_{k}\right)}{L_{1}^{s_{1}} \cdots L_{m}^{s_{m}}}, \quad L_{i}=\sum_{j \in J_{i}} z_{j}, \quad J_{i} \subset\{1, \cdots, k\}, \quad h \text { holom. at zero. }
$$

Questions:

(1) How to evaluate f consistently at the poles $z_{1}=\cdots=z_{k}=0$?
(2) What freedom of choice do we have for the evaluator?

Evaluating a fraction with a linear pole at zero

$$
f\left(z_{1}, z_{2}\right)=\left.\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|_{z_{1}=0, z_{2}=0}=\left\{\begin{array}{c}
1 \text { or }-1 ? \\
0 ? \\
10000 ?
\end{array}\right.
$$

V. Locality on meromorphic germs comes to the rescue

Locality on multiparameter meromorphic germs

Multiparameter meromorphic germs with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{1} \cdots L_{n}^{n}}, h$ holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,

Locality on multiparameter meromorphic germs

Multiparameter meromorphic germs with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{1} \cdots L_{n}^{n}}, h$ holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,
- $\ell_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}, L_{j}: \mathbb{C}^{k} \rightarrow \mathbb{C}$ linear forms.

Locality on multiparameter meromorphic germs

Multiparameter meromorphic germs with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{1} \ldots L_{n}^{\text {s. }}}$, h holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,
- $\ell_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}, L_{j}: \mathbb{C}^{k} \rightarrow \mathbb{C}$ linear forms.
- Dependence space $\operatorname{Dep}(f):=\left\langle\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}\right\rangle$.

multiparameter meromorphic germs

Multiparameter meromorphic germs with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{1} \ldots L_{n}^{s n}}, h$ holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,
- $\ell_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}, L_{j}: \mathbb{C}^{k} \rightarrow \mathbb{C}$ linear forms.
- Dependence space $\operatorname{Dep}(f):=\left\langle\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}\right\rangle$.

Locality: separation of variables

On $\mathcal{M}\left(\mathbb{C}^{\infty}\right)=\bigcup_{k \in \mathbb{N}} \mathcal{M}\left(\mathbb{C}^{k}\right), f_{1} Q^{\top} f_{2} \Longleftrightarrow \operatorname{Dep}\left(f_{1}\right) \perp \operatorname{Dep}\left(f_{2}\right)$.

multiparameter meromorphic germs

Multiparameter meromorphic germs with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{1} \cdots L_{n}^{n}}, h$ holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,
- $\ell_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}, L_{j}: \mathbb{C}^{k} \rightarrow \mathbb{C}$ linear forms.
- Dependence space $\operatorname{Dep}(f):=\left\langle\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}\right\rangle$.

Locality: separation of variables

On $\mathcal{M}\left(\mathbb{C}^{\infty}\right)=\bigcup_{k \in \mathbb{N}} \mathcal{M}\left(\mathbb{C}^{k}\right), f_{1} Q^{\top} f_{2} \Longleftrightarrow \operatorname{Dep}\left(f_{1}\right) \perp \operatorname{Dep}\left(f_{2}\right)$.
$\mathcal{M}_{-}^{Q}\left(\mathbb{C}^{k}\right)$ is the set of polar germs $f=\frac{h}{g}$ with $h \perp^{Q} g$.

multiparameter meromorphic germs

Multiparameter meromorphic germs with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{1} \cdots L_{n}^{n}}, h$ holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,
- $\ell_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}, L_{j}: \mathbb{C}^{k} \rightarrow \mathbb{C}$ linear forms.
- Dependence space $\operatorname{Dep}(f):=\left\langle\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}\right\rangle$.

Locality: separation of variables

On $\mathcal{M}\left(\mathbb{C}^{\infty}\right)=\bigcup_{k \in \mathbb{N}} \mathcal{M}\left(\mathbb{C}^{k}\right), f_{1} Q^{\top} f_{2} \Longleftrightarrow \operatorname{Dep}\left(f_{1}\right) \perp \operatorname{Dep}\left(f_{2}\right)$.
$\mathcal{M}_{-}^{Q}\left(\mathbb{C}^{k}\right)$ is the set of polar germs $f=\frac{h}{g}$ with $h \perp^{Q} g$.
Back to the brain teaser
$\ell:=z_{1} \perp z_{2}=: L \Longrightarrow \frac{z_{1}}{z_{2}} \in \mathcal{M}_{-}^{Q}\left(\mathbb{C}^{2}\right)$

multiparameter meromorphic germs

Multiparameter meromorphic germs with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{1} \cdots L_{n}^{n}}, h$ holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,
- $\ell_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}, L_{j}: \mathbb{C}^{k} \rightarrow \mathbb{C}$ linear forms.
- Dependence space $\operatorname{Dep}(f):=\left\langle\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}\right\rangle$.

Locality: separation of variables

On $\mathcal{M}\left(\mathbb{C}^{\infty}\right)=\bigcup_{k \in \mathbb{N}} \mathcal{M}\left(\mathbb{C}^{k}\right), f_{1} Q^{\top} f_{2} \Longleftrightarrow \operatorname{Dep}\left(f_{1}\right) \perp \operatorname{Dep}\left(f_{2}\right)$.
$\mathcal{M}_{-}^{Q}\left(\mathbb{C}^{k}\right)$ is the set of polar germs $f=\frac{h}{g}$ with $h \perp^{Q} g$.
Back to the brain teaser
$\ell:=z_{1} \perp z_{2}=: L \Longrightarrow \frac{z_{1}}{z_{2}} \in \mathcal{M}_{-}^{Q}\left(\mathbb{C}^{2}\right)$
$\left(\ell:=z_{1}-z_{2}\right) \perp\left(z_{1}+z_{2}=: L\right) \Longrightarrow \frac{z_{1}-z_{2}}{z_{1}+z_{2}} \in \mathcal{M}_{-}^{Q}\left(\mathbb{C}^{2}\right)$.

Back to the locality principle in QFT

We consider $\mathcal{M}:=\mathcal{M}\left(\mathbb{C}^{\infty}\right):=\cup_{k=1}^{\infty} \mathcal{M}\left(\mathbb{C}^{k}\right)$ consisting of meromorphic functions/germs $f: \mathbb{C}^{k} \rightarrow \mathbb{C}$ with linear poles at zero,

Back to the locality principle in QFT

We consider $\mathcal{M}:=\mathcal{M}\left(\mathbb{C}^{\infty}\right):=\cup_{k=1}^{\infty} \mathcal{M}\left(\mathbb{C}^{k}\right)$ consisting of meromorphic functions/germs $f: \mathbb{C}^{k} \rightarrow \mathbb{C}$ with linear poles at zero, $f=\frac{h(\vec{z})}{L_{1}^{s_{1}}(\vec{z}) \cdots L_{m}^{s_{m}}(\vec{z})}, \quad L_{i}$ linear in $\vec{z}:=\left(z_{1}, \cdots, z_{k}\right), h$ holom. at zero.

Back to the locality principle in QFT

We consider $\mathcal{M}:=\mathcal{M}\left(\mathbb{C}^{\infty}\right):=\cup_{k=1}^{\infty} \mathcal{M}\left(\mathbb{C}^{k}\right)$ consisting of meromorphic functions/germs $f: \mathbb{C}^{k} \rightarrow \mathbb{C}$ with linear poles at zero,

$$
f=\frac{h(\vec{z})}{L_{1}^{s_{1}}(\vec{z}) \cdots L_{m}^{s_{m}}(\vec{z})}, \quad L_{i} \text { linear in } \vec{z}:=\left(z_{1}, \cdots, z_{k}\right), h \text { holom. at zero. }
$$

Aim: evaluate meromorphic germs at poles according to the principle of locality: "two events separated in space can be measured independently."

Back to the locality principle in QFT

We consider $\mathcal{M}:=\mathcal{M}\left(\mathbb{C}^{\infty}\right):=\cup_{k=1}^{\infty} \mathcal{M}\left(\mathbb{C}^{k}\right)$ consisting of meromorphic functions/germs $f: \mathbb{C}^{k} \rightarrow \mathbb{C}$ with linear poles at zero, $f=\frac{h(\vec{z})}{L_{1}^{s_{1}}(\vec{z}) \cdots L_{m}^{S_{m}}(\vec{z})}, \quad L_{i}$ linear in $\vec{z}:=\left(z_{1}, \cdots, z_{k}\right), h$ holom. at zero.

Aim: evaluate meromorphic germs at poles according to the principle of locality: "two events separated in space can be measured independently."

Principle of locality: factorisation on independent events

Back to the locality principle in QFT

We consider $\mathcal{M}:=\mathcal{M}\left(\mathbb{C}^{\infty}\right):=\cup_{k=1}^{\infty} \mathcal{M}\left(\mathbb{C}^{k}\right)$ consisting of meromorphic functions/germs $f: \mathbb{C}^{k} \rightarrow \mathbb{C}$ with linear poles at zero, $f=\frac{h(\vec{z})}{L_{1}^{s_{1}}(\vec{z}) \cdots L_{m}^{S_{m}}(\vec{z})}, \quad L_{i}$ linear in $\vec{z}:=\left(z_{1}, \cdots, z_{k}\right), h$ holom. at zero.

Aim: evaluate meromorphic germs at poles according to the principle of locality: "two events separated in space can be measured independently."

Principle of locality: factorisation on independent events

- As before, we equip \mathcal{M} with the locality relation \perp^{Q};

Back to the locality principle in QFT

We consider $\mathcal{M}:=\mathcal{M}\left(\mathbb{C}^{\infty}\right):=\cup_{k=1}^{\infty} \mathcal{M}\left(\mathbb{C}^{k}\right)$ consisting of meromorphic functions/germs $f: \mathbb{C}^{k} \rightarrow \mathbb{C}$ with linear poles at zero,

$$
f=\frac{h(\vec{z})}{L_{1}^{s_{1}}(\vec{z}) \cdots L_{m}^{s_{m}}(\vec{z})}, \quad L_{i} \text { linear in } \vec{z}:=\left(z_{1}, \cdots, z_{k}\right), \quad h \text { holom. at zero. }
$$

Aim: evaluate meromorphic germs at poles according to the principle of locality: "two events separated in space can be measured independently."

Principle of locality: factorisation on independent events

- As before, we equip \mathcal{M} with the locality relation \perp^{Q};

Principle of locality revisited: locality evaluators

$f \perp^{Q} g \Longrightarrow \mathcal{E}(f \cdot g)=\mathcal{E}(f) \mathcal{E}(g)$ for two meromorphic germs f and g in an appropriate subalgebra \mathcal{M}^{\bullet} of \mathcal{M}.

Speer's generalised evaluators

Reminder: Meromorphic germs in $\mathcal{M}^{\text {Feyn }}\left(\mathbb{C}^{k}\right)$ have linear poles $L_{i}=\sum_{j_{i} \in J_{i}} j_{i}$.
Speer's evaluators consist of a family $\mathcal{E}=\left\{\mathcal{E}_{k}, \in \mathbb{N}\right\}$ of linear forms $\mathcal{E}_{k}: \mathcal{M}^{\mathrm{Feyn}}\left(\mathbb{C}^{k}\right) \rightarrow \mathbb{C}$, compatible with the filtration, which fulfill the following conditions

Speer's generalised evaluators

Reminder: Meromorphic germs in $\mathcal{M}^{\text {Feyn }}\left(\mathbb{C}^{k}\right)$ have linear poles $L_{i}=\sum_{j_{i} \in J_{i}} j_{i}$.
Speer's evaluators consist of a family $\mathcal{E}=\left\{\mathcal{E}_{k}, \in \mathbb{N}\right\}$ of linear forms $\mathcal{E}_{k}: \mathcal{M}^{\mathrm{Feyn}}\left(\mathbb{C}^{k}\right) \rightarrow \mathbb{C}$, compatible with the filtration, which fulfill the following conditions
(1) (extend $\left.\mathrm{ev}_{0}\right) \mathcal{E}$ is the ordinary evaluation ev_{0} at zero on holom. germs;

Speer's generalised evaluators

Reminder: Meromorphic germs in $\mathcal{M}^{\text {Feyn }}\left(\mathbb{C}^{k}\right)$ have linear poles $L_{i}=\sum_{j_{i} \in J_{i}} j_{i}$.
Speer's evaluators consist of a family $\mathcal{E}=\left\{\mathcal{E}_{k}, \in \mathbb{N}\right\}$ of linear forms $\mathcal{E}_{k}: \mathcal{M}^{\mathrm{Feyn}}\left(\mathbb{C}^{k}\right) \rightarrow \mathbb{C}$, compatible with the filtration, which fulfill the following conditions
(1) (extend $\left.\mathrm{ev}_{0}\right) \mathcal{E}$ is the ordinary evaluation ev_{0} at zero on holom. germs;
(2) (partial multiplicativity) $\mathcal{E}\left(f_{1} \cdot f_{2}\right)=\mathcal{E}\left(f_{1}\right) \cdot \mathcal{E}\left(f_{2}\right)$ if f_{1} and f_{2} depend on different sets (we call them independent) of variables z_{i};

Speer's generalised evaluators

Reminder: Meromorphic germs in $\mathcal{M}^{\text {Feyn }}\left(\mathbb{C}^{k}\right)$ have linear poles $L_{i}=\sum_{j_{i} \in J_{i}} j_{i}$.
Speer's evaluators consist of a family $\mathcal{E}=\left\{\mathcal{E}_{k}, \in \mathbb{N}\right\}$ of linear forms $\mathcal{E}_{k}: \mathcal{M}^{\mathrm{Feyn}}\left(\mathbb{C}^{k}\right) \rightarrow \mathbb{C}$, compatible with the filtration, which fulfill the following conditions
(1) (extend ev_{0}) \mathcal{E} is the ordinary evaluation ev_{0} at zero on holom. germs;
(2) (partial multiplicativity) $\mathcal{E}\left(f_{1} \cdot f_{2}\right)=\mathcal{E}\left(f_{1}\right) \cdot \mathcal{E}\left(f_{2}\right)$ if f_{1} and f_{2} depend on different sets (we call them independent) of variables z_{i};
(3) \mathcal{E} is invariant under permutations of the variables $\mathcal{E}_{k} \circ \sigma^{*}=\mathcal{E}_{k}$ for any $\sigma \in \Sigma_{k}$, with $\sigma^{*} f\left(z_{1}, \cdots, z_{k}\right):=f\left(z_{\sigma(1)}, \cdots, z_{\sigma(k)}\right)$;

Speer's generalised evaluators

Reminder: Meromorphic germs in $\mathcal{M}^{\text {Feyn }}\left(\mathbb{C}^{k}\right)$ have linear poles $L_{i}=\sum_{j_{i} \in J_{i}} j_{i}$.
Speer's evaluators consist of a family $\mathcal{E}=\left\{\mathcal{E}_{k}, \in \mathbb{N}\right\}$ of linear forms $\mathcal{E}_{k}: \mathcal{M}^{\mathrm{Feyn}}\left(\mathbb{C}^{k}\right) \rightarrow \mathbb{C}$, compatible with the filtration, which fulfill the following conditions
(1) (extend $\left.\mathrm{ev}_{0}\right) \mathcal{E}$ is the ordinary evaluation ev_{0} at zero on holom. germs;
(2) (partial multiplicativity) $\mathcal{E}\left(f_{1} \cdot f_{2}\right)=\mathcal{E}\left(f_{1}\right) \cdot \mathcal{E}\left(f_{2}\right)$ if f_{1} and f_{2} depend on different sets (we call them independent) of variables z_{i};
(3) \mathcal{E} is invariant under permutations of the variables $\mathcal{E}_{k} \circ \sigma^{*}=\mathcal{E}_{k}$ for any $\sigma \in \Sigma_{k}$, with $\sigma^{*} f\left(z_{1}, \cdots, z_{k}\right):=f\left(z_{\sigma(1)}, \cdots, z_{\sigma(k)}\right)$;
(1. (continuity) If $f_{n}\left(\vec{z}_{k}\right) \cdot L_{1}^{s_{1}} \cdots L_{m}^{s_{m}} \underset{n \rightarrow \infty}{\underset{\rightarrow}{\text { niformly }}} g\left(\vec{z}_{k}\right)$ as holomorphic germs, then $\mathcal{E}_{k}\left(f_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathcal{E}_{k}\left(\lim _{n \rightarrow \infty} f_{n}\right)$ (investigated in [Dahmen, Schmeding, S.P. 2022] in the context of Silva spaces).

Speer's generalised evaluators

Reminder: Meromorphic germs in $\mathcal{M}^{\text {Feyn }}\left(\mathbb{C}^{k}\right)$ have linear poles $L_{i}=\sum_{j_{i} \in J_{i}} j_{i}$.
Speer's evaluators consist of a family $\mathcal{E}=\left\{\mathcal{E}_{k}, \in \mathbb{N}\right\}$ of linear forms $\mathcal{E}_{k}: \mathcal{M}^{\mathrm{Feyn}}\left(\mathbb{C}^{k}\right) \rightarrow \mathbb{C}$, compatible with the filtration, which fulfill the following conditions
(1) (extend $\left.\mathrm{ev}_{0}\right) \mathcal{E}$ is the ordinary evaluation ev_{0} at zero on holom. germs;
(2) (partial multiplicativity) $\mathcal{E}\left(f_{1} \cdot f_{2}\right)=\mathcal{E}\left(f_{1}\right) \cdot \mathcal{E}\left(f_{2}\right)$ if f_{1} and f_{2} depend on different sets (we call them independent) of variables z_{i};
(3) \mathcal{E} is invariant under permutations of the variables $\mathcal{E}_{k} \circ \sigma^{*}=\mathcal{E}_{k}$ for any $\sigma \in \Sigma_{k}$, with $\sigma^{*} f\left(z_{1}, \cdots, z_{k}\right):=f\left(z_{\sigma(1)}, \cdots, z_{\sigma(k)}\right)$;
(1. (continuity) If $f_{n}\left(\vec{z}_{k}\right) \cdot L_{1}^{s_{1}} \cdots L_{m}^{s_{m}} \underset{n \rightarrow \infty}{\underset{\rightarrow}{\text { niformly }}} g\left(\vec{z}_{k}\right)$ as holomorphic germs, then $\mathcal{E}_{k}\left(f_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathcal{E}_{k}\left(\lim _{n \rightarrow \infty} f_{n}\right)$ (investigated in [Dahmen, Schmeding, S.P. 2022] in the context of Silva spaces).
Drawback: Speer's approach depends on the choice of coordinates

Where we stand

Data

- $\left(\mathcal{M}^{\bullet}, \perp^{Q}\right)$ an (locality) algebra of meromorphic germs at zero with a prescribed type of poles (e.g. Chen \subset Speer \subset Feynman);

Where we stand

Data

- $\left(\mathcal{M}^{\bullet}, \perp^{Q}\right)$ an (locality) algebra of meromorphic germs at zero with a prescribed type of poles (e.g. Chen \subset Speer \subset Feynman);
- $\mathcal{M}_{+} \subset \mathcal{M}^{\bullet}$ the algebra of holomorphic germs at zero;
- the evaluation at zero: evo : $\mathcal{M}_{+} \rightarrow \mathbb{C}$;

Where we stand

Data

- $\left(\mathcal{M}^{\bullet}, \perp^{Q}\right)$ an (locality) algebra of meromorphic germs at zero with a prescribed type of poles (e.g. Chen \subset Speer \subset Feynman);
- $\mathcal{M}_{+} \subset \mathcal{M}^{\bullet}$ the algebra of holomorphic germs at zero;
- the evaluation at zero: evo : $\mathcal{M}_{+} \rightarrow \mathbb{C}$;
- a group $\mathrm{Gal}^{Q}\left(\mathcal{M}^{\bullet} / \mathcal{M}_{+}\right)$(for "Galois") of (locality) isomorphisms of $\left(\mathcal{M}^{\bullet}, \perp^{Q}\right)$ that leave holomorphic germs invariant;

Where we stand

Data

- $\left(\mathcal{M}^{\bullet}, \perp^{Q}\right)$ an (locality) algebra of meromorphic germs at zero with a prescribed type of poles (e.g. Chen \subset Speer \subset Feynman);
- $\mathcal{M}_{+} \subset \mathcal{M}^{\bullet}$ the algebra of holomorphic germs at zero;
- the evaluation at zero: evo : $\mathcal{M}_{+} \rightarrow \mathbb{C}$;
- a group $\mathrm{Gal}^{Q}\left(\mathcal{M}^{\bullet} / \mathcal{M}_{+}\right)$(for "Galois") of (locality) isomorphisms of $\left(\mathcal{M}^{\bullet}, \perp^{Q}\right)$ that leave holomorphic germs invariant;
- $\mathcal{M}_{-}^{\bullet}$ is generated by polar germs $f=\frac{h}{g}$ with $h \perp^{Q} g$.

Where we stand

Data

- $\left(\mathcal{M}^{\bullet}, \perp^{Q}\right)$ an (locality) algebra of meromorphic germs at zero with a prescribed type of poles (e.g. Chen \subset Speer \subset Feynman);
- $\mathcal{M}_{+} \subset \mathcal{M}^{\bullet}$ the algebra of holomorphic germs at zero;
- the evaluation at zero: evo : $\mathcal{M}_{+} \rightarrow \mathbb{C}$;
- a group $\mathrm{Gal}^{Q}\left(\mathcal{M}^{\bullet} / \mathcal{M}_{+}\right)$(for "Galois") of (locality) isomorphisms of $\left(\mathcal{M}^{\bullet}, \perp^{Q}\right)$ that leave holomorphic germs invariant;
- $\mathcal{M}_{-}^{\bullet}$ is generated by polar germs $f=\frac{h}{g}$ with $h \perp^{Q} g$.

Orthogonal projection

\perp^{Q} induces a splitting [Berline and Vergne 2005, Guo, Zhang, S.P. 2015]

$$
\mathcal{M}^{\bullet}=\mathcal{M}_{+} \oplus^{Q} \mathcal{M}_{-}^{\bullet} \quad \text { and } \quad \pi_{+}{ }^{Q}: \mathcal{M}^{\bullet} \longrightarrow \mathcal{M}_{+}
$$

VI. Classification of locality evaluators

Theorem [Guo, S.P., Zhang 2022]

Definition

A locality evaluator at zero $\mathcal{E}: \mathcal{M}^{\bullet} \longrightarrow \mathbb{C}$ is a linear form, which

Theorem [Guo, S.P., Zhang 2022]

Definition

A locality evaluator at zero $\mathcal{E}: \mathcal{M}^{\bullet} \longrightarrow \mathbb{C}$ is a linear form, which i) extends the ordinary evaluation ev_{0} at zero,

Theorem [Guo, S.P., Zhang 2022]

Definition

A locality evaluator at zero $\mathcal{E}: \mathcal{M}^{\bullet} \longrightarrow \mathbb{C}$ is a linear form, which i) extends the ordinary evaluation ev_{0} at zero, and ii) factorises on independent germs (i.e., it is a locality character):

Theorem [Guo, S.P., Zhang 2022]

Definition

A locality evaluator at zero $\mathcal{E}: \mathcal{M}^{\bullet} \longrightarrow \mathbb{C}$ is a linear form, which i) extends the ordinary evaluation ev_{0} at zero, and ii) factorises on independent germs (i.e., it is a locality character):

$$
f_{1} \perp^{Q} f_{2} \Longrightarrow \mathcal{E}\left(f_{1} \cdot, f_{2}\right)=\mathcal{E}\left(f_{1}\right) \cdot \mathcal{E}\left(f_{2}\right) .
$$

Theorem [Guo, S.P., Zhang 2022]

Definition

A locality evaluator at zero $\mathcal{E}: \mathcal{M}^{\bullet} \longrightarrow \mathbb{C}$ is a linear form, which i) extends the ordinary evaluation ev_{0} at zero, and ii) factorises on independent germs (i.e., it is a locality character):

$$
f_{1} \perp^{Q} f_{2} \Longrightarrow \mathcal{E}\left(f_{1} \cdot, f_{2}\right)=\mathcal{E}\left(f_{1}\right) \cdot \mathcal{E}\left(f_{2}\right) .
$$

Example: Minimal subtraction scheme:

$\mathcal{E}^{\mathrm{MS}}: \mathcal{M} \bullet \xrightarrow{\pi_{+}} \mathcal{M}_{+} \xrightarrow{\mathrm{ev}} \mathbb{C}$ is a locality evaluator.

Theorem [Guo, S.P., Zhang 2022]

Definition

A locality evaluator at zero $\mathcal{E}: \mathcal{M}^{\bullet} \longrightarrow \mathbb{C}$ is a linear form, which i) extends the ordinary evaluation ev_{0} at zero, and ii) factorises on independent germs (i.e., it is a locality character):

$$
f_{1} \perp^{Q} f_{2} \Longrightarrow \mathcal{E}\left(f_{1} \cdot, f_{2}\right)=\mathcal{E}\left(f_{1}\right) \cdot \mathcal{E}\left(f_{2}\right) .
$$

Example: Minimal subtraction scheme:

$\mathcal{E}^{\mathrm{MS}}: \mathcal{M} \bullet \xrightarrow{\pi_{+}{ }^{Q}} \mathcal{M}_{+} \xrightarrow{\mathrm{ev}} \mathbb{C}$ is a locality evaluator.

Theorem

A locality evaluator at zero $\mathcal{E}: \mathcal{M}^{\bullet} \longrightarrow \mathbb{C}$ is of the form:

Theorem [Guo, S.P., Zhang 2022]

Definition

A locality evaluator at zero $\mathcal{E}: \mathcal{M}^{\bullet} \longrightarrow \mathbb{C}$ is a linear form, which i) extends the ordinary evaluation ev_{0} at zero, and ii) factorises on independent germs (i.e., it is a locality character):

$$
f_{1} \perp^{Q} f_{2} \Longrightarrow \mathcal{E}\left(f_{1} \cdot, f_{2}\right)=\mathcal{E}\left(f_{1}\right) \cdot \mathcal{E}\left(f_{2}\right) .
$$

Example: Minimal subtraction scheme:

$\mathcal{E}^{\mathrm{MS}}: \mathcal{M} \cdot \xrightarrow{\pi_{+}} \mathcal{M}_{+} \xrightarrow{\mathrm{ev}_{\mathrm{Q}}} \mathbb{C}$ is a locality evaluator.

Theorem

A locality evaluator at zero $\mathcal{E}: \mathcal{M}^{\bullet} \longrightarrow \mathbb{C}$ is of the form:
$\mathcal{E}=\underbrace{\mathrm{ev}_{0} \circ \pi_{+}{ }^{Q}}_{\mathcal{E}^{\mathrm{MS}}}$

$$
\underbrace{T_{\mathcal{E}}}_{\operatorname{Gal}^{Q}\left(\mathcal{M}^{\mathcal{E}} / \mathcal{M}_{+}\right)}
$$

Ingredients for the proof

Given a locality set (X, \top)

- the locality polynomial algebra generated by X :

Ingredients for the proof

Given a locality set (X, \top)

- the locality polynomial algebra generated by X :a locality algebra
(A, \top) such that X is locality algebraically independent (distinct locality monomials built from X are linearly independent) and (A, \top) if the only locality subalgebra of (A, \top) containing X.

Ingredients for the proof

Given a locality set (X, \top)

- the locality polynomial algebra generated by X :a locality algebra (A, T) such that X is locality algebraically independent (distinct locality monomials built from X are linearly independent) and (A, \top) if the only locality subalgebra of (A, \top) containing X.
- the locality shuffle algebra generated by X :

Ingredients for the proof

Given a locality set (X, \top)

- the locality polynomial algebra generated by X :a locality algebra (A, \top) such that X is locality algebraically independent (distinct locality monomials built from X are linearly independent) and (A, \top) if the only locality subalgebra of (A, \top) containing X.
- the locality shuffle algebra generated by X :the locality polynomial algebra generated by the subset of locality words $w=w_{\mathbf{1}} \cdots w_{k}$ with letters in X such that $w_{i} \top w_{j}, 1 \leq i \neq j \leq k$, plus the empty word.

Ingredients for the proof

Given a locality set (X, \top)

- the locality polynomial algebra generated by X :a locality algebra (A, T) such that X is locality algebraically independent (distinct locality monomials built from X are linearly independent) and (A, T) if the only locality subalgebra of (A, \top) containing X.
- the locality shuffle algebra generated by X :the locality polynomial algebra generated by the subset of locality words $w=w_{\mathbf{1}} \cdots w_{k}$ with letters in X such that $w_{i} \top w_{j}, 1 \leq i \neq j \leq k$, plus the empty word.
- locality Lyndon words with letters in X :

Ingredients for the proof

Given a locality set (X, T)

- the locality polynomial algebra generated by X :a locality algebra (A, \top) such that X is locality algebraically independent (distinct locality monomials built from X are linearly independent) and (A, \top) if the only locality subalgebra of (A, \top) containing X.
- the locality shuffle algebra generated by X :the locality polynomial algebra generated by the subset of locality words $w=w_{1} \cdots w_{k}$ with letters in X such that $w_{i} \top w_{j}, \mathbf{1} \leq i \neq j \leq k$, plus the empty word.
- locality Lyndon words with letters in X: Iocality Lyndon words form an algebraically independent generating set of the locality shuffle algebra generated by X.

Ingredients for the proof

Given a locality set (X, T)

- the locality polynomial algebra generated by X : locality agebra (A, \top) such that X is locality algebraically independent (distinct locality monomials built from X are linearly independent) and (A, \top) if the only locality subalgebra of (A, \top) containing X.
- the locality shuffle algebra generated by X :the localiy polynomial algebra generated by the subset of locality words $w=w_{1} \cdots w_{k}$ with letters in X such that $w_{i} \top w_{j}, 1 \leq i \neq j \leq k$, plus the empty word.
- locality Lyndon words with letters in X : Iocality Lyndon words form an algebraically independent generating set of the locality shuffle algebra generated by X.
- a locality isomorphism $u \mapsto x_{u}$ between the locality algebra generated by Chen-type poles $L_{i}=\sum_{j=1}^{i} \ell_{u_{j}}=\ell_{u_{1}}+\cdots \ell_{u_{i}}$ with $u \top v \Longrightarrow \ell_{u} \perp^{Q} \ell_{v}$ and a certain locality shuffle algebra.
- Conclusion: $\mathcal{M}^{\text {Chen }}\left(\mathcal{M}^{\mathrm{Feyn}}\right)$ are locality polynomial algebras with locality "Lyndon fractions" as locality generators.

Final step of the proof

Since $\mathcal{M}^{\text {Chen }}$, resp. $\mathcal{M}^{\text {Feyn }}$ are \perp-local polynomial algebras, a generalised evaluator is uniquely determined by its values on the free generators.

Final step of the proof

Since $\mathcal{M}^{\text {Chen }}$, resp. $\mathcal{M}^{\text {Feyn }}$ are \perp-local polynomial algebras, a generalised evaluator is uniquely determined by its values on the free generators.

The case of freely generated locality-algebras

Final step of the proof

Since $\mathcal{M}^{\text {Chen }}$, resp. $\mathcal{M}^{\text {Feyn }}$ are \perp-local polynomial algebras, a generalised evaluator is uniquely determined by its values on the free generators.

The case of freely generated locality-algebras
If \mathcal{M}^{\bullet} is a free polynomial locality-algebra generated by \mathcal{S}^{\bullet}, then

Final step of the proof

Since $\mathcal{M}^{\text {Chen }}$, resp. $\mathcal{M}^{\text {Feyn }}$ are \perp-local polynomial algebras, a generalised evaluator is uniquely determined by its values on the free generators.

The case of freely generated locality-algebras

If \mathcal{M}^{\bullet} is a free polynomial locality-algebra generated by \mathcal{S}^{\bullet}, then $T \in \operatorname{Gal}^{-}\left(\mathcal{M}^{\bullet} / \mathcal{M}_{+}\right)$ is uniquely determined by $\left\{T(S), S \in \mathcal{S}^{\bullet}\right\}$:
$T\left(\sum_{S \in \mathcal{S}} h_{S} \cdot S\right)=\sum_{S \in \mathcal{S}} h_{S} \cdot T(S)$.

\perp-locality evaluators

Final step of the proof

Since $\mathcal{M}^{\text {Chen }}$, resp. $\mathcal{M}^{\text {Feyn }}$ are \perp-local polynomial algebras, a generalised evaluator is uniquely determined by its values on the free generators.

The case of freely generated locality-algebras

If \mathcal{M}^{\bullet} is a free polynomial locality-algebra generated by \mathcal{S}^{\bullet}, then $T \in \operatorname{Gal}^{-}\left(\mathcal{M}^{\bullet} / \mathcal{M}_{+}\right)$ is uniquely determined by $\left\{T(S), S \in \mathcal{S}^{\bullet}\right\}$:
$T\left(\sum_{S \in \mathcal{S}} h_{S} \cdot S\right)=\sum_{S \in \mathcal{S}} \cdot h_{S} \cdot T(S)$.

\perp-locality evaluators

Given a \perp^{Q}-locality evaluator \mathcal{E} on a freely generated algebra \mathcal{M}^{\bullet} generated by \mathcal{S},

Final step of the proof

Since $\mathcal{M}^{\text {Chen }}$, resp. $\mathcal{M}^{\text {Feyn }}$ are \perp-local polynomial algebras, a generalised evaluator is uniquely determined by its values on the free generators.

The case of freely generated locality-algebras

If \mathcal{M}^{\bullet} is a free polynomial locality-algebra generated by \mathcal{S}^{\bullet}, then $T \in \operatorname{Gal}^{-}\left(\mathcal{M}^{\bullet} / \mathcal{M}_{+}\right)$ is uniquely determined by $\left\{T(S), S \in \mathcal{S}^{\bullet}\right\}$:
$T\left(\sum_{S \in \mathcal{S}} h_{S} \cdot S\right)=\sum_{S \in \mathcal{S}} \cdot h_{S} \cdot T(S)$.

_-locality evaluators

Given a \perp^{Q}-locality evaluator \mathcal{E} on a freely generated algebra \mathcal{M}^{\bullet} generated by \mathcal{S}, the map $T_{\mathcal{E}}: S^{\bullet} \mapsto S^{\bullet}+\mathcal{E}\left(S^{\bullet}\right) 1$ defines an element of the Galois group $\operatorname{Gal}^{\perp}\left(\mathcal{M}^{\bullet} / \mathcal{M}_{+}\right)$

Final step of the proof

Since $\mathcal{M}^{\text {Chen }}$, resp. $\mathcal{M}^{\text {Feyn }}$ are \perp-local polynomial algebras, a generalised evaluator is uniquely determined by its values on the free generators.

The case of freely generated locality-algebras

If \mathcal{M}^{\bullet} is a free polynomial locality-algebra generated by \mathcal{S}^{\bullet}, then $T \in \operatorname{Gal}^{-}\left(\mathcal{M}^{\bullet} / \mathcal{M}_{+}\right)$ is uniquely determined by $\left\{T(S), S \in \mathcal{S}^{\bullet}\right\}$:
$T\left(\sum_{S \in \mathcal{S}} h_{S} \cdot S\right)=\sum_{S \in \mathcal{S}} \cdot h_{S} \cdot T(S)$.

_-locality evaluators

Given a \perp^{Q}-locality evaluator \mathcal{E} on a freely generated algebra \mathcal{M}^{\bullet} generated by \mathcal{S}, the map $T_{\mathcal{E}}: S^{\bullet} \mapsto S^{\bullet}+\mathcal{E}\left(S^{\bullet}\right) 1$ defines an element of the Galois group $\operatorname{Gal}^{\perp}\left(\mathcal{M}^{\bullet} / \mathcal{M}_{+}\right)$and

$$
\mathcal{E}=\underbrace{T_{\mathcal{E}}}_{Q_{- \text {minimal subtraction }}^{e v_{0} \circ \pi_{+}}{ }_{\text {Galois }}^{\text {transformation }}} \circ
$$

THANK YOU FOR YOUR ATTENTION!
P. Clavier, L. Foissy, D. Lopez and S. Paycha, Tensor products and the Milnor-Moore theorem in the locality setup arXiv:2205.14616 (2022)

围 P. Clavier, L. Guo, B. Zhang and S. P., An algebraic formulation of the locality principle in renormalisation, European Journal of Mathematics, Volume 5 (2019) 356-394
P. Clavier, L. Guo, B. Zhang and S. P., Renormalisation via locality morphisms, Revista Colombiana de Matemáticas, Volume 53 (2019) 113-141

國 P. Clavier, L. Guo, B. Zhang and S. P., Renormalisation and locality: branched zeta values, in "Algebraic Combinatorics, Resurgence, Moulds and Applications (Carma)" Vol. 2 ,Eds. F. Chapoton, F. Fauvet, C. Malvenuto, J.-Y. Thibon, Irma Lectures in Mathematics and Theoretical Physics 32, European Math. Soc. (2020) 85-132
P. Clavier, L. Guo, B. Zhang and S. P., Locality and renormalisation: universal properties and integrals on trees, Journal of Mathematical Physics 61, 022301 (2020)
L. Guo, B. Zhang and S. P., Renormalisation and the Euler-Maclaurin formula on cones, Duke Math J., 166 (3) (2017) 537-571.
E. Guo, B. Zhang and S. P., A conical approach to Laurent expansions for multivariate meromorphic germs with linear poles, Pacific Journal of Mathematics 307 (2020) 159-196.

- L. Guo, B. Zhang and S. P., Galois groups of meromorphic germs and multiparameter renormalisation arXiv:2301.02300 (2023)
R. Guo, B. Zhang and S. P., Mathematical reflections on locality (online survey article), Jahresbericht der Deutschen Mathematiker Vereinigung (2023)

围 R. Dahmen, A. Schmeding and S. P., A topological splitting of the space of meromorphic germs in several variables and continuous evaluators, arXiv:2206.13993 (2022)

