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Convex Regression: Motivating Applications

Fitting a convex function to data is natural in
many applications

I Economics1
I Natural convex relationships in data

I Engineering Design2
I Ex: Aircraft profile drag, Circuit design
I Ultimate goal is to optimize function
I Convexity useful for computational
efficiency

1[Afriat, 1967; Varian, 1982, 1984; Hannah andDunson, 2013]
2[Hannah andDunson, 2012; Hoburg and Abbeel, 2014]



Special Case: Support Function Estimation

I Goal is to reconstruct the convex hull of an
object

I Measurements are support function
evaluations

I Support function of convex set K ⊂ Rd is
hK(u) := maxx∈K 〈x, u〉, u ∈ Sd−1

Applications: Radar, MRI, Computed Tomography3

3[Lele, Kulkani, andWillsky, 1992; Gregor and Rannou, 2002; Prince andWillsky, 1990]



Convex Regression

Goal: Estimate convex function f̂n from
{(xi, yi)}ni=1 inRd × R such that

yi ≈ f̂n(xi)

First consider the least squares estimator (LSE):

f̂n ∈ argming:Rd→R is convex
1
n

n∑
i=1

(g(xi)− yi)2

I Solution to the LSE is the maximum of n affine functions4
I Can be computed using convex quadratic programming

4[Prince andWillsky, 1990; Seijo and Sen, 2011]
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Drawbacks of LSE
I For n input-output pairs LSE is maximum of n affine functions
I Complexity increases with amount of data
I LSE is minimax suboptimal for Lipschitz convex regression (d ≥ 5) and
support function estimation (d ≥ 6)5

LSE Reconstruction of the function y = ‖x‖2 from n = 20,50,200 noisy
measurements

5[Guntaboyina, 2012; Kur, Gao, Guntuboyina, and Sen, 2020; Kur, Rakhlin, and Guntuboyina, 2020]



Polyhedral Regression
I f ism-polyhedral if f(x) = maxi=1,...,m{〈ai, x〉+ bi}
I Constrain LSE overm-polyhedral functions

f̂n ∈ argming:Rd→R ism-polyhedral
1
n

n∑
i=1

(g(xi)− yi)2

I Obtains minimax rates6
I Tractable methods for computing estimator 7

I Drawback: polyhedral approximations of non-polyhedral functions and sets

6[Guntaboyina, 2012; Han andWellner, 2016]
7[Magnani and Boyd, 2009; Hannah andDunson, 2013; Balazs et al, 2015; Ghosh et al., 2020]
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Spectrahedral Regression [O. & Chandrasekaran, ’22]
I Sm: m×m real symmetric matrices
I A function f ism-spectrahedral if for some A0, . . . ,Ad ∈ Sm,

f(x) = λmax

( d∑
i=1
xiAi + A0

)

I Constrain LSE overm-spectrahedral functions

f̂n ∈ argming:Rd→R ism-spectrahedral
1
n

n∑
i=1

(g(xi)− yi)2
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Linear→ Semidefinite programming
Can optimizem-polyhedral function

f(x) = maxi=1,...,m{〈ai, x〉+ bi}
using linear programming

I {(x, y) ∈ Rd+1 : f(x) ≤ y} is a polyhedron
{(x, y) ∈ Rd+1 : 0 ≤ y−〈ai, x〉−bi, i = 1, . . . ,m}

Can optimizem-spectrahedral function f(x) = λmax

(∑d
i=1 xiAi + A0

)
using

semidefinite programming
I {(x, y) ∈ Rd+1 : f(x) ≤ y} is a spectrahedron

{(x, y) ∈ Rd+1 : 0 4 yI−
d∑
i=1
xiAi − A0}
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Spectrahedral Regression: AverageWeeklyWages
Data set: 1988 Current Population Survey: 25,361 records of weekly wages
with (i) Experience (ii) Education

Figure: Spectrahedral (m = 3) and Polyhedral (m = 6) estimators of average weekly wages
versus years experience and education



Spectrahedral Regression: Aircraft Design
Data set: XFOIL simulated data of airplane wing profile drag coefficient as a
function of the Reynolds number and lift coefficient

Figure: Spectrahedral (m = 3) and Polyhedral (m = 6) estimators



Support Function Estimation [Soh &Chandrasekaran, 21]
I Polyhedral regression→Constrain LSE over polytopes withm vertices:

Figure:m = 6,m = 12 polytope, and LSE reconstructions of the unit `1-ball from
200 noisy support function measurements

I Spectrahedral regression→
Constrain LSE over m-spectratopes

I m-spectratopes are linear images of
anm-dimensional spectroplex:
{X ∈ Sm : X � 0, 〈X, I〉 = 1} Figure:m = 3 spectratope and LSE

reconstructions of `2-ball from 50 noisy
support function measurements
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Support Function Estimation: Lung Reconstruction

(a) n = 50, LSE (b) n = 50,m = 3

Figure: LSE andm-spectrahedral (m = 3) lung reconstruction8

8[Soh and Chandrasekaran, 2021]



Block Spectrahedral Regression
I f is (m, k)-spectrahedral if f(x) = λmax

(∑d
i=1 xiAi + A0

)
where

A0, . . . ,Ad ∈ Smk are block-diagonal with blocks of size k

Figure: Polyhedral (m, k) = (6,1), block spectrahedral (m, k) = (4,2), and spectrahedral
m = 3 reconstructions of y = ‖x‖2.
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Block Spectrahedral Regression
I f is (m, k)-spectrahedral if f(x) = λmax

(∑d
i=1 xiAi + A0

)
where

A0, . . . ,Ad ∈ Smk are block-diagonal with blocks of size k

Figure: Polyhedral (m, k) = (6,1), block spectrahedral (m, k) = (4,2), and spectrahedral
m = 3 reconstructions of y = exp(〈x, b〉).



Questions

1. How do you compute the spectrahedral estimator?

2. What is the expressive power of spectrahedral
functions?
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AlternatingMinimization
I ForA = (A0, . . . ,Ad) ∈ (Smk )d+1, defineA[ξ] =

∑d
j=0 ξjAj

I Let ξ(i) = (x(i),1) ∈ Rd+1. Want to compute:

Â ∈ argminA∈(Smk )d+1
1
n

n∑
i=1

[y(i) − λmax

(
A[ξ(i)]

)]2
,

Input: Data collection {(x(i), y(i))}ni=1; initializationA ∈ (Smk )d+1
Algorithm: Repeat until convergence

I Step 1: Update optimal eigenvectors u(i) ← λmax(A[ξ(i)])
I Step 2: UpdateA by solving

argminA∈(Smk )d+1
1
n

n∑
i=1

(y(i) − 〈u(i),A[ξ(i)]〉
)2
,

i.e.A+ ← (ΞTAΞA)−1ΞTAy, where ΞTA = (ξ(1) ⊗ u(1)| · · · |ξ(n) ⊗ u(n))

Output: Final iterateA



AlternatingMinimization
I ForA = (A0, . . . ,Ad) ∈ (Smk )d+1, defineA[ξ] =

∑d
j=0 ξjAj

I Let ξ(i) = (x(i),1) ∈ Rd+1. Want to compute:
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Local Convergence Guarantee for AM
Assumption: {(xi, yi)}ni=1 i.i.d. samples from (X, Y) ∈ Rd × R such that

X ∼ N (0, I), Y = λmax(A∗[ξ]) + ε, ξ = (X,1), ε ∼ N (0, σ2)

Suppose that the true parameterA∗ ∈ (Smk )d+1 satisfies:
infu∈Sd λ1(A∗[u])− λ2(A∗[u]) := κ > 0

Theorem (O. and Chandrasekaran)
If the initial parameterA(0) satisfies

‖A(0) −A∗‖2F ≤
c1κ2

(d+ 1)m ,
and n is large enough, then the error at all iterations t ≥ 1 simultaneously satisfies

‖A(t) −A∗‖2F ≤
(3
4
)t
‖A(0) −A∗‖2F +

c2m3(d+ 1)σ2 log(n)2
n

with high probability, where c1 and c2 are absolute constants.
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Local Convergence Guarantee for AM (Version 2)
Assumption: {(xi, yi)}ni=1 i.i.d. samples from (X, Y) ∈ Rd × R such that

‖X‖∞ ≤ η, Y = λmax(A∗[ξ]) + ε, ξ = (X,1), ε ∼ N (0, σ2)

A∗[ξ] =

A
(1)
∗ [ξ] . . . 0... . . . ...
0 . . . A(m/k)

∗ [ξ]


I There exists κ > 0 and δ ∈ (0,1) such that for all j, ` ∈ {1, . . . ,m/k},

infj6=`
E
[
|λ1(A(j)

∗ [ξ])− λ1(A(`)
∗ [ξ])|

]
≥ mκkδ .

and if k ≥ 2, for all j ∈ {1, . . . ,m/k}
infj=1,...,m/k infu∈Sd λ1(A(j)

∗ [u])− λ2(A(j)
∗ [u]) := κ > 0.

I Assume that there is a constant c > 0 such that for allA 6= B ∈ (Sk)d+1,
P (|λ1(A[ξ])− λ1(B[ξ])| ≤ ρE [|λ1(A[ξ])− λ1(B[ξ])|]) ≤ cρ, for all ρ > 0.
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Local Convergence Guarantee for AM (Version 2)

Theorem (O. and Chandrasekaran)
If the initial parameter choiceA0 satisfies

‖A(0) −A∗‖2F ≤
c1κ2k3

(d+ 1)3m5 ,
and n is large enough, then the error at all iterations t ≥ 1 simultaneously satisfies

‖A(t) −A∗‖2F ≤
(3
4
)t
‖A(0) −A∗‖2F +

c2m3(d+ 1)σ2 log(n)2
n ,

with probability→ 1− 3δ as n→∞.



Questions

1. How do you compute the spectrahedral estimator?

2. What is the expressive power of spectrahedral
functions?



Expressiveness of Spectrahedral Functions
Howwell do (m, k)-spectrahedral functions approximate Lipschitz convex
functions?

I A result of Dudley (1974) implies that for polyhedral functions,
sup

f:Ω→R convexand L-Lipschitz
infg ism-polyhedral ‖g − f‖∞ = O(m− 2d )

Theorem (O. and Chandrasekaran)
Suppose km = O(mt) for t ∈ [0,1]. For all ε > 0,

O(m− 2(1+t)
d −ε

)
≤ sup

f:Ω→R convexand L-Lipschitz
infg is (m, km)-spectrahedral ‖g − f‖∞ ≤ O

(m− 2d
)

I For constant k, approximation rate is same as form-polyhedral functions
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Proof Idea: Use Statistical Risk Bound
I Define

f̂(n)
m,k ∈ argming is (m, k)-spectrahedral

1
n

n∑
i=1

(g(xi)− yi)2,

where {(xi, yi)}ni=1 are i.i.d. samples of a random pair (X, Y) ∈ Rd × R s.t.
Y = f(X) + ε

Theorem (O. and Chandrasekaran)

E[(̂f(n)
m,k(X)− f(X))2] ≤ O

(
infg is (m, k)-spectrahedral ‖g − f‖2∞ +

km log(n)

n
)

I Minimax rate for class of convex and L-Lipschitz functions9 implies
sup

f:Ω→R convexand L-Lipschitz
E[(̂f(n)

m,k(X)− f(X))2] ≥ O(n− 4d+4 )

9[Balázs, György, and Szepesvári, 2015]



Summary
I Spectrahedral regression is a new approach for fitting convex functions to
data that generalizes polyhedral regression

I Returns convex estimators that exhibit both smooth and singular features
I Expressiveness of spectrahedral functions has implications for howwell
semidefinite relaxations approximate general convex optimization

I Empirical evidence: m-spectrahedral regression performs comparably to
m(m+ 1)/2-polyhedral regression



FutureWork

I Guidance for parameter selection and tuning
I Computational Guarantees: initialization, extend other approaches for
polyhedral regression

I Approximation power of (m, k)-spectrahedral functions
I Other shape-constrained regression, density estimation applications



Thank you!

Questions?


