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All of the sets we will consider will be convex (i.e. K is convex if
x ,y ∈ K implies (1− λ)x + λy ∈ K for every λ ∈ [0,1].)

We will usually deal with convex bodies: i.e. convex, compact
sets with non-empty interior.

We will denote by voln(K ) - volume of K ⊂Rn

We will often use notion of Minkowski sum:
K + L = {x + y : x ∈ K and y ∈ L}.
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Supermodularity of Volume

Theorem of Fradelizi, Madiman and Zvavitch
Let A be a convex body and B and C compact, convex sets, all in Rn.
Then, volume is supermodular, i.e.

voln(A) + voln(A + B + C) ≥ voln(A + B) + voln(A + C).

How would one go about proving this result?
We all know that voln(tK ) = tnvoln(K ) for t ≥ 0, i.e. volume is a
homogeneous measure of degree of homogeneity n. But there is
much more!!!
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Main Definitions: Mixed Volume

Let K1,K2,K3 be convex bodies in Rn and t1, t2, t3 ≥ 0
Then, volume of Minkowski summation is a polynomial:

voln(t1K1 + t2K2 + t3K3) =
3

∑
i1,i2,...,in=0

V (Ki1 , . . . ,Kin )ti1 ti2 . . . tin .

where V (Ki1 , . . . ,Kin ) is the mixed volume of Ki1 , . . . ,Kin .

V (K , . . . ,K ) = voln(K ); Mixed volume is symmetric and
translation invariant in its arguments.
If K ⊂ L, then V (K ,K2,K3, . . . ,Kn) ≤ V (L,K2,K3, . . . ,Kn).

Notation



Main Definitions: Mixed Volume

Let K1,K2,K3 be convex bodies in Rn and t1, t2, t3 ≥ 0
Then, volume of Minkowski summation is a polynomial:

voln(t1K1 + t2K2 + t3K3) =
3

∑
i1,i2,...,in=0

V (Ki1 , . . . ,Kin )ti1 ti2 . . . tin .

where V (Ki1 , . . . ,Kin ) is the mixed volume of Ki1 , . . . ,Kin .

V (K , . . . ,K ) = voln(K ); Mixed volume is symmetric and
translation invariant in its arguments.

If K ⊂ L, then V (K ,K2,K3, . . . ,Kn) ≤ V (L,K2,K3, . . . ,Kn).
Notation



Main Definitions: Mixed Volume

Let K1,K2,K3 be convex bodies in Rn and t1, t2, t3 ≥ 0
Then, volume of Minkowski summation is a polynomial:

voln(t1K1 + t2K2 + t3K3) =
3

∑
i1,i2,...,in=0

V (Ki1 , . . . ,Kin )ti1 ti2 . . . tin .

where V (Ki1 , . . . ,Kin ) is the mixed volume of Ki1 , . . . ,Kin .

V (K , . . . ,K ) = voln(K ); Mixed volume is symmetric and
translation invariant in its arguments.
If K ⊂ L, then V (K ,K2,K3, . . . ,Kn) ≤ V (L,K2,K3, . . . ,Kn).

Notation



Main Definitions: Mixed Volume

Let K1,K2,K3 be convex bodies in Rn and t1, t2, t3 ≥ 0
Then, volume of Minkowski summation is a polynomial:

voln(t1K1 + t2K2 + t3K3) =
3

∑
i1,i2,...,in=0

V (Ki1 , . . . ,Kin )ti1 ti2 . . . tin .

where V (Ki1 , . . . ,Kin ) is the mixed volume of Ki1 , . . . ,Kin .

V (K , . . . ,K ) = voln(K ); Mixed volume is symmetric and
translation invariant in its arguments.
If K ⊂ L, then V (K ,K2,K3, . . . ,Kn) ≤ V (L,K2,K3, . . . ,Kn).

Notation We denote
V (K1, . . . ,Km,K . . . ,K ) = V (K1, . . . ,Km,K [n−m]).



Main Definitions: Mixed Volume

Let K1,K2,K3 be convex bodies in Rn and t1, t2, t3 ≥ 0
Then, volume of Minkowski summation is a polynomial:

voln(t1K1 + t2K2 + t3K3) =

∑
0≤k≤j≤n

(
n

n− j

)(
n− j

n− j − k

)
V (K1[n− j − k ],K2[j ],K3[k ])t

n−j−k
1 t j

2tk
3 .

where V (K1[j ],K2[k ],K3[n− j − k ]) is the mixed volume of K1 j-times,
K2 k -times and K3 (n− j − k) times.

V (K , . . . ,K ) = voln(K ); Mixed volume is symmetric and
translation invariant in its arguments.
If K ⊂ L, then V (K ,K2,K3, . . . ,Kn) ≤ V (L,K2,K3, . . . ,Kn).

Notation We denote
V (K1, . . . ,Km,K . . . ,K ) = V (K1, . . . ,Km,K [n−m]).



Main Definitions: Mixed Volume

Let K1,K2,K3 be convex bodies in Rn and t1, t2, t3 ≥ 0
Then, volume of Minkowski summation is a polynomial:

voln(t1K1 + t2K2 + t3K3) =

∑
0≤k≤j≤n

(
n

n− j

)(
n− j

n− j − k

)
V (K1[n− j − k ],K2[j ],K3[k ])t

n−j−k
1 t j

2tk
3 .

where V (K1[j ],K2[k ],K3[n− j − k ]) is the mixed volume of K1 j-times,
K2 k -times and K3 (n− j − k) times.

V (K , . . . ,K ) = voln(K ); Mixed volume is symmetric and
translation invariant in its arguments.
If K ⊂ L, then V (K ,K2,K3, . . . ,Kn) ≤ V (L,K2,K3, . . . ,Kn).

Notation We also use V (K ,L) = V (K [n− 1],L[1]) and
V (A,B,C) = V (A[n− 2],B[1],C[1]).



Main Question

To establish

voln(A) + voln(A + B + C) ≥ voln(A + B) + voln(A + C),

expand each term with the Minkowski polynomial and obtain known
inequalities about the mixed volumes.

Can we establish which Radon (locally finite and inner regular Borel)
measures on Rn are supermodular?

Turns out, it is connected to another story!
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Surface Area

Combining the two:

voln−1(∂K ) = lim
t→0

voln(K + tBn
2)− voln(K )

t

= lim
t→0

voln(K ) + tnV (K ,Bn
2) +O(t2)− voln(K )

t
=nV (K ,Bn

2).

Thus, from monotonicity of mixed volumes, K ⊆ L implies
voln−1(∂K ) ≤ voln−1(∂L).
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Monotonicity of Weighted Surface Area
Definition
Let µ be a Borel measure on Rn and K a Borel set (convex body).
Then, the Minkowski content of K with respect to µ, or its weighted
surface area is given by

µ+(∂K ) = liminf
ε→0

µ(K + εBn
2)− µ(K )

ε
.

Kryvonos and Langharst (’22): If K is convex body and µ has density
φ containing ∂K in its Borel set, then the liminf is a limit and

µ+(∂K ) =
∫

∂K
φ(x)dHn−1(x).

Theorem of G. Saracco and G. Stefani (’23)
Let µ be a Borel measure on Rn with continuous density that has the
following property: if K and L are convex bodies such that K ⊆ L, then
µ+(∂K ) ≤ µ+(∂L). Then, µ is a multiple of the Lebesgue measure.



Monotonicity of Weighted Surface Area

Kryvonos and Langharst (’22): If K is convex body and µ has density
φ containing ∂K in its Borel set, then the liminf is a limit and

µ+(∂K ) =
∫

∂K
φ(x)dHn−1(x).

Theorem of G. Saracco and G. Stefani (’23)
Let µ be a Borel measure on Rn with continuous density that has the
following property: if K and L are convex bodies such that K ⊆ L, then
µ+(∂K ) ≤ µ+(∂L). Then, µ is a multiple of the Lebesgue measure.



Monotonicity of Weighted Surface Area

Kryvonos and Langharst (’22): If K is convex body and µ has density
φ containing ∂K in its Borel set, then the liminf is a limit and

µ+(∂K ) =
∫

∂K
φ(x)dHn−1(x).

Theorem of G. Saracco and G. Stefani (’23)
Let µ be a Borel measure on Rn with continuous density that has the
following property: if K and L are convex bodies such that K ⊆ L, then
µ+(∂K ) ≤ µ+(∂L). Then, µ is a multiple of the Lebesgue measure.



Mixed Measures

We say a collection of Borel sets is a class if it is closed under
Minkowski summation and dilation.

Definition (Mixed Measures; Milman-Rotem and Livshyts)
Let µ be a Borel measure supported on a class of Borel sets C. Then,
for K ,L ∈ C,

µ(K ,L) := liminf
ε→0

µ(K + εL)− µ(K )

ε
.

C will always be some convex sets (all convex bodies, symmetric
convex bodies, etc.) in which case, the liminf is a limit if µ has density
that

is continuous Livshysts (’19)
contains ∂K in its Lebesgue set (K-L ’22)

Notice: µ+(∂K ) = µ(K ;Bn
2).
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The Connection

Local forms of supermodularity
Let µ be a Radon measure on Rn. Let A,B and C be classes of
convex sets such that B,C ⊂ A. Then the following are equivalent: for
every A ∈ A,B ∈ B and C ∈ C,

1 µ(A + B + C) + µ(A) ≥ µ(A + B) + µ(A + C),
2 µ(A + C;B) ≥ µ(A;B),

Local forms of supermodularity with a ball
Let µ be a Radon measure on Rn and set B = {rBn

2}r≥0. Let A and C
be classes of convex sets such that B,C ⊂ A. Then the following are
equivalent: for every r ≥ 0, A ∈ A and C ∈ C

1 µ(A + rBn
2 + C) + µ(A) ≥ µ(A + rBn

2) + µ(A + C).
2 µ+(∂(A + C)) ≥ µ+(∂A).
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Classification Results

Main Theorem
Let µ be a Radon measure on Rn such that, for every convex body K
and compact, convex set L, one has

µ+(∂(K + L)) ≥ µ+(∂K ).

Then, µ is a multiple of the Lebesgue measure.
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and compact, convex set L, one has
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Then, µ is a multiple of the Lebesgue measure.
We use that the class of dilates of Bn

2 is a subset of all convex bodies,
and the localization theorem, to obtain the following.



Classification Results

Main Theorem
Let µ be a Radon measure on Rn such that, for every convex body K
and compact, convex set L, one has

µ+(∂(K + L)) ≥ µ+(∂K ).

Then, µ is a multiple of the Lebesgue measure.

Main Corollary
Let µ be a Radon measure that is supermodular over the class of all
convex bodies. Then, µ is a multiple of the Lebesgue measure.



Can we bridge the gap?

An open question
Let µ be a Radon measure on Rn with the following property: for
every convex body K and compact, convex set L such that L contains
the origin, one has

µ+(∂(K + L)) ≥ µ+(∂K ),

it is true that then, µ is a constant multiple of the Lebesgue measure?



A different type of result

Theorem in the plane
Let K be a convex body in R2 and let µ be the Borel measure with
density |x |2. Then, for every symmetric convex, compact set L
containing the origin in R2

µ+(∂(K + L)) ≥ µ+(∂K ).

Hint to the proof
Let K be a convex body in R2. Let µ be the Borel measure with
density φ(x) = |x |2. Then, for every u ∈R2

µ+(∂(K + [0,u])) ≥ µ+(∂K ).
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Restricting the classes of Convex Bodies

Theorem for Zonoids
Let µ be a Radon measure on Rn with the following property: for
every symmetric convex body A, centered zonoid B and zonoid
containing the origin C, one has

µ(A + C;B) ≥ µ(A;B).

Then, µ is a constant multiple of the Lebesgue measure.

Theorem for Zonoids
Let µ be a Radon measure on Rn with the following property: for
every symmetric convex body A, centered zonoid B and zonoid
containing the origin C, one has

µ(A + C + B) + µ(A) ≥ µ(A + B) + µ(A + C).

Then, µ is a constant multiple of the Lebesgue measure.
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